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Abstract

This paper presents a graphical user interface (GUI) to carry out a Bayesian regression
analysis in a very friendly environment without any programming skills (drag and drop).
This paper is designed for teaching and applied purposes at an introductory level; we
present the basic theory underlying all regression models that we developed in our GUI,
which in turn is based on an interactive web application using shiny, and libraries from
R. We carry out some applications to highlight the potential of our GUI for applied
researchers and practitioners.
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1 Introduction

The main objective of this paper is to present an open source teaching graphical user inter-
face (GUI) to implement Bayesian regression analysis using cross sectional and longitudinal
data. We present a tutorial for implementing these models in our GUI, some applications,
and the basic theoretical framework. Therefore, practitioners and applied researchers can ap-
ply Bayesian regression analysis understanding its theoretical foundation without requiring
programming skills. The latter seems to be a significant impediment to increasing the use of
the Bayesian framework (Woodward, 2005; Karabatsos, 2016).

Table 1 shows the available graphical user interfaces for carrying out Bayesian regression
analysis. ShinyStan (Stan Development Team, 2017) is a very flexible open source program,
but users are required to have some programming skills. BugsXLA (Woodward, 2005) is open
source, but less flexible. However, users do not need to have programming skills. Bayesian
regression: Nonparametric and parametric models (Karabatsos, 2016) is a very flexible and
friendly GUI that is based on MATLAB Compiler for a 64-bit Windows computer. Its fo-
cus is on Bayesian nonparametric regressions, and it can be thought of for users who have
mastered basic parametric models, such as the ones that we show in our GUI. On the other
hand, MATLAB toolkit, Stata and BayES are not open source.

We developed our GUI based on an interactive web application using shiny (Chang, 2018),
and some libraries in R (R Core Team, 2018). The specific libraries and commands that are
used in our GUI can be seen in Table 2. It has nine univariate models, four multivariate, three
hierarchical longitudinal, Bayesian bootstrap, and six Bayesian model averaging frameworks.
In addition, it gives basic summaries and diagnostics of the posterior chains, as well as the
posterior chains themselves, and different plots, such as trace, autocorrelation and densities.
In terms of its flexibility and possibilities, our GUI lies between ShinyStan and BugsXLA:
users are not required to have any programming skills, but it is not as advanced as Karabatsos
(2016)’s software. However, our GUI can be run in any operating system. Our GUI, which
we call BEsmarter,1 is freely available at https://github.com/besmarter/BSTApp; so users
have access to all our code and datasets.

After this brief introduction, we present in Section 2 our GUI, and how to use it. Section
3 presents some empirical examples to illustrate the potential use of our GUI. Sections 4 and
5 are more theory oriented. Section 4 introduces some general theoretical and computational
aspects of the Bayesian framework, and Section 5 presents the specific technical details of
the models implemented in our GUI. Lastly, Section 6 presents some concluding remarks and
future developments.

2 Using BEsmarter

Simulated and applied datasets are in the folders DataSim (see Table 3 for details), and
DataApp (see Table 4 for details), respectively. The former folder also includes the files that

1Bayesian econometrics: Simulations, models and applications to research, teaching and encoding with
responsibility.
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were used to simulate different processes, so, the population parameters are available, and as
a consequence these files can be used as a pedagogical tool to show some statistical properties
of the inferential frameworks available in our GUI. The latter folder contains the datasets used
in our applications in Section 3. Users should use these datasets as templates as a guide to the
structure of their own datasets. Simply type shiny::runGitHub(“besmarter/BSTApp”,
launch.browser=T) in the R package console or any R code editor to run our GUI.

After this, users can see a new window where a presentation of our research team is
displayed. In addition, the top panel in Figure 1 shows the class of models that can be
estimated in our GUI.

Figure 1: BEsmarter GUI

The selection indicates univariate models in that the radio button on the left hand side
shows the specific models inside this generic class. In particular, users can see that the normal
model is selected from inside the class of univariate models. See Figure 2.

Figure 2: Univariate models: Specification
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Then, the right hand side panel displays a widget to upload the input dataset, which
should be a csv file with headers in the first row. Users also should select the kind of separa-
tor used in the input file: comma, semicolon, or tab (use the folders DataSim and DataApp
for the input file templates). Range sliders help to set the number of iterations of the MCMC
and the amount of burn-in, and the thinning parameter can be selected as well (see Section
4 for technical details). After this, users should specify the equation. This is expressed in
the format used by R (see Main equation box in Figure 2, y ∼ x1 + x2 + x3). Note that
the class of univariate models includes the intercept by default, except ordered probit, where
the specification has to do this explicitly, that is, ordered probit models do not admit an
intercept, for identification issues (see Section 5.1). Hence, users should write down specifi-
cally this fact (y ∼ x1 + x2 + x3 − 1). Finally, users should define the hyperparameters of
the prior; for instance, in the normal-inverse gamma model, these are the mean, covariance,
shape, and scale (see Figure 2). However, users should take into account that our GUI has
“non-informative” hyperparameters by default in all our modelling frameworks, so the last
part is not a requirement.

Figure 3: Univariate models: Results

After this specification process, users should click the Go! button to initiate the estima-
tion. Our GUI displays the summary statistics and convergence diagnostics after this process
is finished (see Figure 3). There are also widgets to download posterior chains (csv file) and
graphs (pdf and eps files). Note that the order of the coefficients in the results (summary,
posterior chains, and graphs) is first for the location parameters, and then for the scale pa-
rameters.

Multinomial models (probit and logit) require a dataset file to have in the first column the
dependent variable, then alternative specific regressors (for instance alternatives’ prices), and
finally, non-alternative regressors (for instance, income). Specification also requires defining
the base category, number of alternatives (this is also required in ordered probit), number
of alternative specific regressors, and number of non-alternative regressors (see Figure 4).
Multinomial logit also allows defining a tuning parameter, the number of degrees of freedom
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in this case, for the Metropolis–Hastings algorithm (see Sections 4 and 5 for details). This is
a feature in our GUI when the estimation of the models is based on the Metropolis–Hastings
algorithm. The order of the coefficients in the results of these models is first the intercepts,
and then the non-alternative specific regressors, which are in order of the category, and lastly,
the coefficients for the alternative specific regressors. Note that the non-alternative specific
regressors associated with the base category are equal to zero (they do not appear in the
results). In addition, some coefficients of the main diagonal of the covariance matrix are
constant due to identification issues in multinomial and multivariate probit models.

Figure 4: Univariate models: Multinomial

In the case of the negative binomial model, users should set a dispersion parameter (α,
see the negative binomial model). User should also set the censorship points and quantiles
in the Tobit and quantile models, respectively.

Figure 5 displays the multivariate regression setting. In this case, the input file should
have first the dependent variables, and then the regressors. If there are intercepts in each
equation, there should be a column of 1’s after the dependent variables in the input file. The
user also has to set the number of dependent variables, the number of regressors, if necessary
include the intercept, and the values of the hyperparameters (see Figure 5).

The input file in seemingly unrelated regressions should have first the dependent variables,
and then the regressors by equation, including the intercept in each equation if necessary (col-
umn of 1’s). Users should define the number of dependent variables (equations), the number
of total regressors, that is, the sum of all regressors associated with the equation (if necessary
include intercepts, each intercept is an additional regressor), and the number of regressors
by equation (if necessary include the intercept). Users can also set the values of the hyper-
parameters if there is prior information.

The results of the simple multivariate and seemingly unrelated regressions show first the
posterior location parameters by equation, and then the posterior covariance matrix.
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Figure 5: Multivariate models: Simple multivariate

In the instrumental variable setting, users should specify the main equation and the in-
strumental equation. This setting includes intercepts by default. The first variable on the
right hand side in the main equation has to be the variable with endogeneity issues. In the
instrumental equation box, the dependent variable is the variable with endogeneity issues
as a function of the instruments. Users can also specify the values of the hyperparameters
if they have prior information. The input file should have the dependent variable, the en-
dogenous regressor, the instruments, and the exogenous regressors. The results first list the
posterior estimates of the endogenous regressor, then the location parameters of the auxiliary
regression (instrumental equation), and the location parameters of the exogenous regressors.
Last is the posterior covariance matrix.

Figure 6: Multivariate models: Multivariate probit

The multivariate probit model requires an input dataset ordered by unit, for instance
three choices implies repeat each unit three times. The first column has to be the identifi-
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cation of each unit; users should use ordered integers, then the dependent variable, just one
vector, composed of 0’s and 1’s, then the regressors, which should include a column of 1’s for
the intercepts. Users should set the number of units, number of regressors, and number of
choices (see Figure 6). The results first display the posterior location parameters by equation,
and then the posterior covariance matrix.

The input files for hierarchical longitudinal models should have first the dependent vari-
able, then the regressors and a cross sectional identifier (i = 1, 2, . . . ,m). It is not a require-
ment to have a balanced dataset: ni can be different for each i (see subsection 5.3 for technical
details). Users should specify the fixed part equation and the random part equation, both
in R format. In case of only requiring random intercepts, do not introduce anything in the
latter part (see Figure 7). Users should also type the name of the cross sectional identifier
variable. The results displayed and the posterior graphs are associated with the fixed effects
and covariance matrix. However, users can download the posterior chains of all posterior
estimates: fixed and random effects, and covariance matrix.

Figure 7: Hierarchical longitudinal models: Specification

Bayesian bootstrap only requires uploading a dataset, specifying the number of iterations
of the MCMC, the resampling size, and the equation (see Figure 8). The input file has the
same structure as the file used in the univariate normal model.

Bayesian model averaging based on a Gaussian distribution can be carried out using the
Bayesian information criterion (BIC) approximation, Markov chain Monte Carlo model com-
position (MC3), or instrumental variables (see Figure 9). The former two approaches require
an input dataset where the first column is the dependent variable, and then, the potentially
important regressors. Users should set the band width model selection parameter (OR) and
number of iterations for BIC and MC3, respectively. The results include the posterior inclu-
sion probability (p! = 0), expected value (EV), and standard deviation (SD) of the coefficients
associated with each regressor. The BIC framework also displays the most relevant models,
including the number of regressors, the coefficient of determination (R2), the BIC, and the
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Figure 8: Bayesian bootstrap: Specification

posterior model probability. Users can download two csv files: Best models and Descriptive
statistics coefficients. The former is a 0-1 matrix such that the columns are the regressors
and the rows are the models; a 1 indicates the presence of a specific regressor in a specific
model, 0 otherwise. Note that the last column of this file is the posterior model probability
for each model (row). The latter file shows the posterior inclusion probabilities, expected
values, and standard deviations associated with each regressor, taking into account the BMA
procedure based on the best models.

Figure 9: Bayesian model averaging: Specification and results

Bayesian model averaging with endogeneity issues requires two input files. The first one
has the dependent variable in the first column, the next columns are the regressors with
endogeneity issues, and then the exogeneous regressors. The user should include a column
of 1’s if an intercept is required. The second input file has all the instruments. Users should
also introduce the number of regressors with endogeneity issues (see Figure 10).
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Figure 10: Bayesian model averaging: Instrumental variable specification

The results include the posterior inclusion probabilities and expected values for each
regressor. The user can find the results of the main equation, and then of the auxiliary
equations. Users can download csv files of BMA results for both the second stage (main
equation) and the first stage (auxiliary equations). In addition, users can download the pos-
terior chains of the location parameters of the main equation, βl, l = 1, 2, . . . , dim {β}, the
location parameters of the auxiliary equations, γj,i, j = 1, 2, . . . , dim {βs} where dim {βs} is
the number of regressors with endogeneity issues, i = 1, 2, . . . , dim {γ}, where dim {γ} is the
number of regressors in the auxiliary regressors (exogeneous regressors + instruments), and
the elements of the covariance matrix σj,k (see subsection 5.5 for technical details).

Bayesian model averaging based on BIC approximation for non-linear models, logit,
gamma, and Poisson, requires an input dataset where the first column is the dependent
variable, and the other columns are the potentially relevant regressors. Users should specify
the band width model selection parameters, which are also referred to as Occam’s window
parameters (OR and OL). Our GUI displays the PIP (p! = 0), the expected value of the
posterior coefficients (EV), and the standard deviation (SD). In addition, users can see the
results associated with the models with the highest posterior model probabilities, and down-
load csv files with the results of specifications of the best models, and descriptive statistics
of the posterior coefficients from the BMA procedure. These files are similar to the results
of the BIC approximation of the Gaussian model.

User should also note that sometimes our GUI shuts down. In our experience, this is
due to computational issues using the implicit commands that we call when estimating some
models, for instance, computationally singular systems, missing values where TRUE/FALSE
needed, L-BFGS-B needs finite values of “fn”, NA/NaN/Inf values, or Error in backsolve.
Sometimes these issues can be solved by adjusting the dataset, for instance, avoiding high
levels of multicollinearity. In addition, users can identify these problems by checking the
console of their rstudio cloud sections, where the specific folder/file where the issue happened
is specified. In any case, we would appreciate your feedback to improve and enhance our
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GUI.

3 Applications using BEsmarter

The main purpose of this section is to illustrate the potential of our GUI to carry out some
applications. We encourage users to replicate these applications, as we do not display in
figures most of the results, due to space limitations.2 In addition, there are technical aspects
that are covered in the next two sections.

3.1 Univariate models

Continuous response: The market value of soccer players in Europe
We use the dataset 1ValueFootballPlayers.csv, which was provided by Serna Rodŕıguez et al.
(2018), to find the determinants of high performance soccer players in the five most important
national leagues in Europe.

The specification to enter in the main equation box is

log(Value) ∼ Perf + Perf2 + Age + Age2 + NatTeam + Goals + Goals2 + Exp + Exp2 + Assists,

where Value is the market value in Euros (2017), Perf is a measure of performance, Age is the
players’ age in years, NatTem is an indicator variable that takes the value of 1 if the player
has been on the national team, Goals is the number of goals scored by the player during his
career, Exp is his experience in years, and Assists is the number of assist made by the player
in the 2015–2016 season. All variables followed by a 2 are squared variables.

We initially assume that there are no censorship problems, the effect of the regressors are
the same through the support of the dependent variable, and the dependent variable obeys
a normal distribution. So, we ran a normal-inverse gamma model using 30,000 MCMC iter-
ations plus a burn-in equal to 5,000, and a thinning parameter equal to 1 using the default
hyperparameters.

The results suggest that age, squared age, national team, goals, experience, and squared
experience are relevant regressors. For instance, we found that the 2.5% and 97.5% percentiles
of the posterior estimate associated with the variable Goals are 4.57e-03 and 1.82e-02. These
values can be used to find the 95% symmetric credible interval. This means that there is
a 0.95 probability that the population parameter lies in (4.57e-03, 1.82e-02), which would
suggest that this variable is relevant to explain the market value of a soccer player.3 We
also found that the effect of having been on the national team has a 95% credible interval
equal to (0.58, 1.04) with a median equal to 0.81, that is, an increase of the market value
of the player of 124.8% (exp(0.81) − 1) compared with a player that has not ever been on
a national team. The posterior distribution of this variable can be seen in Figure 11. This

2Take into account that as inference in Bayesian models is based on simulation methods, results do not
coincide 100%.

3Users should take into account that formal inference (hypothesis tests) in a Bayesian framework are based
on Bayes factors. See subsection 5.5 for details.
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graph is automatically generated by our GUI, and can be downloaded in the zip file named
Posterior Graphs.csv ; but we should take into account that the national team is the sixth
variable, remember that by default the intercept is the first variable.
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Figure 11: Posterior distribution: National team

A good advantage of the Bayesian framework is that we can easily calculate the posterior
distribution of functions of the parameter estimates, for instance, the age that maximizes the
market value of a soccer player, OptAge = − βAge

2βAge2
. We can estimate this using the posterior

chains that can be downloaded from our GUI. This is in the file named Posterior chains.csv.
Figure 12 shows this posterior distribution, where we observe that the mean value is equal
to 24.31 years, and the 95% symmetric credible interval is (23.28, 25.36).

We can also see some convergence diagnostics from this application. In particular, the
Geweke (1992) test indicates that there is no statistically significant difference at 5% between
the first 10% of the posterior chains and the last 50% of the posterior chains. This is due to
the fact that the absolute value of all the statistical tests are less than 1.96 (the value that
defines the critical region in a normal distribution for a bilateral test at the 5% significance
level). The Raftery and Lewis (1992) tests indicate dependence factors very close to 1 in all
cases, and as a consequence lower than 5, which means a low level of autocorrelation of the
posterior draws. Lastly, all the posterior chains passed the Heidelberger and Welch (1983)
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Figure 12: Posterior distribution: Age to maximize market value of soccer players

test, indicating that it seems that the posterior draws come from stationary distributions.
See Section 4 for details regarding these tests.

Let’s assume that we only have the market value of soccer players whose value is greater
than e1,000,000, which means that approximately 21.5% of our sample is censored. Estimat-
ing a normal-inverse gamma model without taking into account the censoring issue would
mean inconsistent parameter estimates. For instance, we estimated a normal-inverse gamma
model having as dependent variable log(ValueCens), which is the censored dependent vari-
able, using the same setting as the baseline framework. We found that age, squared age,
national team, goals and experience are potentially relevant variables for predicting the mar-
ket value, but this exercise suggests that squared experience is not relevant, a variable that
was relevant in our previous estimation without censoring issues. Therefore, we estimated
a Tobit model where log(ValueCens) is the dependent variable, which is left censored at
log(1, 000, 000) ≈ 13.82, with the same MCMC setting and hyperparameters as the baseline
estimation. All convergence diagnostics seem good, and we got the same potentially relevant
variables as in the baseline estimation, except for squared experience.

Now let’s check if the marginal effects of the regressors are not constant over the support
of the dependent variable. For instance, we want to check if the marginal effect of goals
varies with the market value of the soccer player. So, we can estimate a Bayesian quantile
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regression. In particular, we estimated models at the 0.1, 0.5 (median) and 0.9 quantiles. We
found that age, squared age, and national team are potentially relevant regressors to explain
these quantiles. For instance, the age that maximizes the market value is approximately 24.5
years in all these three quantiles. However, goals is only relevant when we estimated the
median model, which in general has better convergence diagnostics and narrower credible in-
tervals. Observe that experience is not relevant in quantile regressions, whereas this variable
is relevant in mean regressions.

Lastly, we carried out a Bayesian bootstrap, which means that we did not assume any
particular distribution for the dependent variable. In particular, we set 20,000 iterations with
a resample size equal to 1,000 (see subsection 5.4 for technical details). We used the same
specification as in the normal-inverse gamma model.

The results show the posterior mean estimates, the highest posterior density credible in-
tervals at 95%, and some percentiles that can be used to obtain the 95% symmetric credible
interval. It seems that age, squared age, national team, goals, experience, and squared ex-
perience are statistically significant variables to explain the market value of a soccer player.
Observe that these variables were also relevant in the normal-inverse gamma model. For in-
stance, the highest density and symmetric credible intervals for national team are the same,
(0.61, 1.08). This is also similar to the 95% credible interval using the normal-inverse gamma
model. All convergence statistics seem good, which suggests that the posterior draws come
from stationary distributions.

Binary response: Determinants of hospitalization in Medelĺın
We use the dataset named 2HealthMed.csv, which was provided by Ramı́rez Hassan et al.
(2013). Our dependent variable is a binary indicator with a value equal to 1 if an individual
was hospitalized in 2007, and 0 otherwise.

The equation to enter in the main equation box is

Hosp ∼ SHI + Female + Age + Age2 + Est2 + Est3 + Fair + Good + Excellent,

where SHI is a binary variable equal to 1 if the individual is in a subsidized health care
program and 0 otherwise, Female is an indicator of gender, Age in years, Age2 is squared
age, Est2 and Est3 are indicators of socio-economic status, the reference is Est1, which is the
lowest, and self perception of health status where bad is the reference.

We ran this application using a logit model with 30,000 MCMC iterations plus a burn-in
equal to 10,000, a thinning parameter equal to 5, and a tuning parameter for the Metropolis–
Hastings algorithm equal to 1.01. This implies an effective sample size equal to 6,000. It
seems from our results that female and health status are relevant variables for hospitaliza-
tion, as their 95% credible intervals do not cross 0. Women have a higher probability of being
hospitalized than do men, and people with bad self perception of health condition also have a
higher probability of being hospitalized. Observe that we can use the posterior chains, which
can be downloaded from our GUI, to obtain the posterior distributions of the marginal effects
without extra computational burden.
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Figure 13: Autocorrelation plot: Female, logit with MCMC iterations 30,000

Regarding the convergence diagnostics, we observe that the posterior chains passed the
Geweke (1992) test, most of them passed the Heidelberger and Welch (1983) test, but there
is a high level of autocorrelation as the dependence factors are around 30. This also can be
seen in Figure 13, which is automatically generated by our GUI, where we have the autocor-
relation plot of Female.

We can increase the number of MCMC iterations and the thinning parameter, or play
around with the tuning parameter, to decrease the level of autocorrelation. For instance, we
ran again this application with the same settings, except that we ran 100,000 iterations with
a thinning parameter equal to 50. This setting decreases enormously the level of autocorre-
lation.

We also carried out this application using the probit model with the baseline setting of
the logit model. We got the same results regarding potentially relevant predictors.4 However,
the probit model does not require a tuning parameter in its MCMC algorithm, which in turn
generates less autocorrelated chains, as can be seen in Figure 14.

Multinomial response: Choice of fishing mode

4Remember that in this model our GUI displays the posterior results according to the order in the equation.
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Figure 14: Autocorrelation plot: Female, probit with MCMC iterations 30,000

We used in these applications the dataset 3Fishing.csv from Cameron and Trivedi (2005,
p. 491). The dependent variable is mutually exclusive alternatives regarding fishing modes
(mode), where beach is equal to 1, pier is equal to 2, private boat is equal to 3, and chartered
boat (baseline alternative) is equal to 4. The specification to enter in the main equation box
is

mode ∼price.beach + price.pier + price.boat + price.charter

+ catch.beach + catch.pier + catch.boat + catch.charter + income,

where price.beach, price.pier, price.boat and price.charter are the prices for each of the al-
ternative fishing modes; catch.beach, catch.pier, catch.boat and catch.charter are the catch
rates for each mode, and income is the individual’s income.

We estimated a multinomial probit model where chartered boat is the base category, the
number of choice categories is four, there are two alternative-specific regressors (price and
catch rate), and one non alternative-specific regressor (income). This setting involves the
estimation of eight location parameters: three intercepts, three for income, one for price, and
one for catch rate. This is the order of the posterior chains. Note that the location coefficients
are set equal to 0 for the baseline category. For multinomial models, we strongly recommend
using the last category as the baseline (see subsection 5.1 for details). The multinomial probit
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model also gives posterior estimates for a 3 × 3 covariance matrix (four alternatives minus
one), where the element (1,1) is equal to 1 due to identification issues, and elements 2 and 4
are the same, as well as 3 and 7, and 6 and 8, due to symmetry.5 Observe that this identi-
fication restriction implies NaN values in Geweke (1992) and Heidelberger and Welch (1983)
tests for element (1,1) of the covariance matrix, and just eight dependence factors associated
with the remaining elements of the covariance matrix.

We ran 100,000 MCMC iterations plus 10,000 as burn-in with a thinning parameter equal
to 5, where all priors use default values for the hyperparameters. We found that the 95%
credible intervals of the coefficient associated with income for beach and private boat alter-
natives are equal to (1.31e-05, 9.284e-05) and (4.05e-05, 1.50e-04). This suggests that the
probability of choosing these alternatives increases compared to a chartered boat when in-
come increases. In addition, an increase in the price and/or a decrease in the catch rate for
specific fishing alternatives imply lower probabilities of choosing them as the 95% credible
intervals are (-1.00e-02, -4.90e-01) and (1.50e-01, 4.89e-01), respectively.

We also estimated this specification using the multinomial logit model. We got the warn-
ing message “Error: missing value where TRUE/FALSE needed” in many tries. However, we
can download the posterior chains and graphs, and observed that the mixing properties of the
posterior draws are very bad, that is, we rejected the null hypothesis that the posterior draws
come from stationary distributions. In general, we found that the mixing properties of these
models (multinomial probit and logit) were bad in this application. It should also be taken
into account that when warning messages are displayed in our GUI, there is a high chance
that there are convergence issues of the posterior chains. So, the results are not trustworthy.

Ordered and count response: Determinants of preventive health care in Medelĺın
We used the file named 2HealthMed.csv in these applications. First, we used an ordered pro-
bit model where the dependent variable is MedVisPrevOr, which is an ordered variable equal
to 1 if the individual did not visit a physician in 2007 for preventive reasons, 2 if the indi-
vidual visited once in that year, and so on, until it is equal to 6 for visiting five or more
times. The latter category is 1.6% of the sample. Observe that the dependent variable has
six categories. The equation to enter in the main equation box is

MedVisPrevOr ∼SHI + Female + FemaleAge + Age + Age2 + Est2 + Est3 + Fair + Good + Excellent

+ PriEd + HighEd + VocEd + UnivEd− 1,

where FemaleAge is the interaction between female and age, and the last four variables are
indicators of educational achievement: primary, high school, vocational, and university, the
reference is not obtaining any degree. All other variables were described previously in the
binary response applications. Observe the -1 at the end of the specification. This is because
ordered probit models do not identify the intercept, which is implicit in the cutoffs (see sub-
section 5.1).

5Remember that this is the order in the pdf, eps and csv files that can be downloaded from our GUI.
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We ran this application with 50,000 MCMC iterations plus 10,000 as burn-in, and thin-
ning parameter equal to 5. This setting means 10,000 effective posterior draws. We used
the default settings for the hyperparameters of the prior and the tuning parameter for the
Metropolis–Hastings algorithm.

The results suggest that young women and older individuals (at decreasing rate) in the
subsidized health program, characterized in the second socioeconomic status with increasing
self perception of health condition, and not having high school as their highest education
degree, have a higher probability of visiting a physician for preventive health aims.

However, there are some convergence issues with the posterior chains of the health self
perception category. This can be seen in the Geweke (1992) test due to these estimates hav-
ing statistical tests greater than 1.96 in magnitude. These values implies rejection of the null
hypothesis of equal means between the first 10% posterior draws and the last 50% posterior
draws. Dependence factors are close to 5, except for excellent health self perception. The
Heidelberger and Welch (1983) test does not give evidence to reject the null hypothesis of
draws from stationary chains.

We also got the posterior estimates of the cutoffs in the ordered probit model. These
estimates are necessary to calculate the probability that an individual is in a specific cate-
gory of visiting physicians. Due to identification restrictions, the first cutoff is set equal to
0. That is why we have NaN values in Geweke (1992) and Heidelberger and Welch (1983)
tests, and we observe only four values in the Raftery (1993) test, which correspond to the re-
maining free cutoffs. It seems that these cutoff estimates have some convergence issues when
taking as diagnostic tool the Geweke (1992) test. Their dependence factors are also very high.

We ran this application again using 100,000 MCMC iterations plus a burn-in of 10,000
and a thinning parameter equal to 10. With this setting, the convergence properties of all
the posterior draws were improved. We got similar results regarding the posterior descriptive
statistics. In addition, we can use the posterior chains to calculate the posterior distribution
of any function of the parameter estimates, such as the marginal effects.

Now we estimate a negative binomial model where the dependent variable (MedVisPrev)
is the number of preventive health care visits to physicians in 2007. The equation to enter
into the main equation box is

MedVisPrev ∼ SHI+Female+Age+Est2+Est3+Fair+Good+Excellent+PriEd+HighEd+VocEd+UnivEd,

We initially included in our specification the squared age; however, the algorithm had
issues with infinite values. This can be an issue with highly collinear regressors.

We ran this application using 20,000 MCMC iterations, a burn-in equal to 5,000, and
a thinning parameter equal to 5. We set the default priors, that is, mean equal to 0, an
identity matrix as covariance matrix for the location parameters, and shape and scale hyper-
parameters equal to 0.001 for the the parameter associated with the number of failures until
the experiment stopped in the negative binomial distribution. The tuning parameters of the
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Metropolis–Hastings algorithm were also the defaults.

The results suggest that individuals characterized in stratum 3 visit physicians less fre-
quently for preventive purposes than individuals in other strata. The 95% credible interval
for Est3 is (-0.15, -0.06). On the other hand, individuals whose maximum level of educa-
tion is primary and vocational visit physicians more frequently than individuals without any
educational achievement. The median estimates for these coefficients are 0.08 and 0.24, re-
spectively. Observe that these coefficients are the semi-elasticities of the odds ratios, success
vs. failure, which in turn is associated with the mean value of the negative binomial variable.6

So, individuals whose maximum level of education is primary visit physicians on average 8%
more than individuals without any education achievement.

In general, the posterior chains do not reject the null hypothesis of stationarity, as the
values of the Geweke (1992) tests are lower than 1.96 in magnitude, and the p-values of Hei-
delberger and Welch (1983) are greater than 0.05. However, the dependence factor is greater
than 30, which means a high level of autocorrelation of the posterior chains, as can be seen
from the autocorrelation plots (not displayed here, but generated automatically using our
GUI).

We carried out the same exercise except that the prior mean vector was equal to 0.5, and
the covariance matrix to diag {1000}, which means a priori a positive effect of the regressors,
but more uncertainty regarding the location of the prior mean. We got similar results as with
the baseline exercise. This is because with an increasing sample size, the posterior estimates
are consistent, and the prior information has less weight on the posterior results. The sample
size is 12,975 in this dataset.

3.2 Multivariate models

Continuous responses: The effect of institutions on per capita GDP
To illustrate the potential of our GUI to estimate multivariate models, we used the dataset
provided by Acemoglu et al. (2001), who analyzed the effect of property rights on economic
growth.

First of all, we used the dataset 5Institutions.csv to estimate the following set of equations:

log(pcGDP95i) = π0 + π1 log(Morti) + π2Africa + π3Asia + π4Other + e1i, (1)

PAERi = γ0 + γ1 log(Morti) + e2i, (2)

where pcGDP95, PAER and Mort are the per capita GDP in 1995, the average index of pro-
tection against expropriation between 1985 and 1995, and the settler mortality rate during

6The mean of a negative binomial random variable is θiγ
1−θi

, where θi is the success probability and γ is the
number of failures until the experiment stopped. Following the definitions of subsection 5.1 regarding negative
binomial models, and after some simple manipulations, we have that logE [Yi|xi] = x′iβ.
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the time of colonization. Africa, Asia and Other are dummies for continents, with America
as the baseline group.

As there are different sets of regressors in each equation, and we suspect there is corre-
lation between the stochastic errors of these two equations, we should estimate a seemingly
unrelated regressions (SUR) model.

We should take into account that there are two equations: the first one has five regres-
sors, including the intercept, and the second equation has two regressors (intercept plus the
mortality rate). We used default values for the hyperparameters, this implies “vague” prior
information, and hence an “objective” Bayesian approach.

We set 10,000 MCMC iterations plus 1,000 burn-in iterations, and a thinning parameter
equal to 1. It seems that this setting gives posterior chains that converge to stationary dis-
tributions. All stationary tests do not reject the null hypothesis of “stationarity,” and the
mixing properties look good (dependence factors close to 1, autocorrelation and trace plots
seem to indicate no autocorrelation).

The most important parameters are the effect of the mortality rate on gross domestic
product and property rights. Their 95% credible intervals are (-0.67, -0.29) and (-0.85, -
0.35), respectively (second and seventh parameters). This suggests that the settler mortality
rate during the time of colonization is negatively associated with economic growth and prop-
erty rights. In addition, the 95% credible interval of the covariance between the stochastic
errors of these two equations is (0.33, 0.88), which suggests that there is statistically signifi-
cant evidence of correlation between the equations.

The previous set of equations can be considered as a restricted reduced form system,
where the coefficients of the continents are set equal to 0 in the property rights equation.
We can think in the following system of structural equations as producing the previous, but
unrestricted, reduced form system,

log(pcGDP95i) = β0 + β1PAERi + β2Africa + β3Asia + β4Other + u1i, (3)

PAERi = α0 + α1 log(pcGDP95i) + α2 log(Morti) + u2i. (4)

We used the file 4Institutions.csv, which has the structure to estimate multivariate Bayesian
regressions using our GUI, to identify the causal effect of property rights on per capita GDP.
In particular, we use the same MCMC and hyperparameters setting as in the previous exercise
to obtain the posterior estimates of the reduced system without imposing zero restrictions of
the effect of continents on property rights. The structural parameter β1 is equal to π1/γ1.7

We used the posterior draws automatically generated by our GUI to obtain the posterior

7Substituting Equation 4 into Equation 3 and comparing with Equation 1 yields π1 = β1α2
1−β1α1

. Solving for
the PAER as a function of the exogenous regressors in the structural system, and comparing with Equation
2, yields γ1 = α2

1−β1α1
. Observe one needs independent equations (β1α1 6= 1), and the exclusion restriction

(α2 6= 0).
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chain of this structural parameter, which are the causal effects that Acemoglu et al. (2001)
wanted to identify. The 95% credible interval is (0.56, 2.93), the posterior mean value is
1.12, and the median value is 0.98. If we estimate a multivariate system without taking into
account the dummy variables associated with the continents, the causal effect has a 95%
credible interval (0.68, 1.43) with posterior mean and median values equal to 0.94 and 0.97,
respectively. Observe that the length of the second interval is shorter than the first. This is
because the dummy variables of the continents are not statistical relevant for the property
rights equation. As a consequence, the former estimation is less efficient.

Observe that we also obtain the posterior draws of the covariance matrix of these two
reduced form equations from our GUI. All the convergence diagnostics indicate that the pos-
terior draws (location and scale parameters) seem to come from stationary distributions.

Another way to identify the causal effect of property rights on per capita GDP is using
instrumental variables. Therefore, we used the file 6Institutions.csv to estimate Equation 3
using the mortality rate as an instrument for property rights. The equation to enter in the
main equation box is

logpcGDP95 ∼ PAER + Africa + Asia + Other,

and the equation to enter in the instrumental equation box is

PAER ∼ logMort.

We used 20,000 MCMC iterations plus a burn-in equal to 5,000, and a thinning param-
eter equal to 5. So, the effective length of the posterior draws is 4,000. Using the default
hyperparameters, the 95% credible interval of the coefficient associated with the endogenous
variable, which are the first to be displayed in our descriptive and diagnostic statistics, is
(0.55, 1.21), and the mean value is equal to 0.82. So, this is the effect of property rights on
per capita GDP. Our GUI display next the posterior results associated with the instrumental
equation, there we obtained a 95% credible interval equal to (-0.83, -0.35) for the effect of the
mortality rate on the property rights. This suggests that the instrument is not weak. Then,
we obtained the posterior results for the exogenous regressors in the main equation, which
suggest that Africa and Asia dummies variables have negative effects on per capita GDP.
Finally, we got the posterior estimates for the covariance matrix, which suggest that there
is a negative covariance between the GDP equation and PAER equation, the 95% credible
interval is (-1.50, -0.26).

All posterior draws seem to come from stationary distributions. However, there are high
levels of autocorrelation in some posterior chains, as suggested by the dependence factors and
posterior plots.

Binary responses: Self selection in hospitalization due to a subsidized health
care program in Medelĺın
We finish this subsection using the dataset 7HealthMed.csv where the dependent variable is
equal to y = [Hosp SHI]′ where Hosp is equal to 1 if an individual was hospitalized in 2007, 0
otherwise, and SHI is equal to 1 if the individual had subsidized health insurance that year,
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and 0 otherwise. Recall that our application in binary response models was to uncover the
determinants of hospitalization in Medelĺın (Colombia), where one of the regressors was a
binary indicator of being in a subsidized health care program. We can use a bivariate probit
model if we suspect there is a dependence regarding the decisions involving these two vari-
ables. We would expect a priori that being in a subsidized health care program would imply
a higher probability of being hospitalized ceteris paribus. However, if an individual expects
to be hospitalized in the future, and the factors that drive this decision are unobserved to
the econometrician, we would have a feedback effect from being hospitalized on being in a
subsidized health care program.

We took into account 9 regressors: a constant, female, age, squared age, self perception of
health status taking as reference bad (four categories), and the proportion of the individual’s
age spent living in her/his neighborhood (PTL). The last variable tries to take into account
the social capital that can affect being in the subsidized health insurance program, as the
target population is identified by the local government (?). We have 12975 individuals chosen
two options (subsidized regime and hospitalization).

We set 20,000 MCMC iterations plus 1,000 iterations as burn-in, and a thinning param-
eter equal to 5. This implies an effective length of the posterior chains equal to 4,000 draws.
We also used default values for the hyperparameters of the prior distributions. In general, the
convergence diagnostics seem good, except that there is a high level of autocorrelation for the
posterior chain of the correlation between the two equations, as indicated by the dependence
factors, and the trace and autocorrelation plots. Observe that the tests of Geweke (1992)
and Heidelberger and Welch (1983) have NaN values for the elements (1, 1) and (2, 2) of the
covariance matrix, as these parameters were set equal to 1 due to identification restrictions.
This also means just two values for the dependence factors, which are actually the same due
to symmetry.

The results suggest that only female is relevant to explain hospitalization. The 95% cred-
ible interval is (3.13e-02, 0.22). Observe that only 3.11% of the sample has been hospitalized.
Probit models are not well designed for this kind of dataset, but our main purpose is to illus-
trate the use of our GUI. On the other hand, the results suggest that age, squared age, and
the proportion of age spent living in the neighborhood are statistically relevant to explain
enrollment in the subsidized program. Their 95% credible intervals are (2.63e-01, 3.27e-01),
(-8.05e-03, -2.05e-03) and (0.15, 0.27), respectively. The latter result seems to support the
social capital hypothesis. Lastly, the 95% credible interval for the correlation between the two
binary equations is (-0.07, 0.06), suggesting that there is no self selection regarding these two
decisions (hospitalization and subsidized insurance). So, it seems that it is better to estimate
univariate binary models for each of these dependent variables, for the sake of parsimony.

3.3 Hierarchical longitudinal models

Normal model: The relation between productivity and public investment
We used the dataset named 8PublicCap.csv used by Ramı́rez Hassan (2017) to analyze the
relation between public investment and gross state product in the setting of a spatial panel
dataset consisting of 48 US states from 1970 to 1986. In particular, the specification to type
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into the main equation box of fixed effects is

log(gsp) ∼ log(pcap) + log(pc) + log(emp) + unemp,

where gsp in the gross state product, pcap is public capital, and pc is private capital all in
US$, emp is employment (people), and unemp is the unemployment rate in percentage.

We left empty the main equation box of random effects as we assumed that the unob-
served heterogeneity is not associated with any particular regressors. This means that we
control for the unobserved heterogeneity using just the constant terms. The variable which
identifies the units is id.

We ran this application using 10,000 MCMC iterations plus a burn-in equal to 5,000
iterations, and a thinning parameter equal to 1. We also used the default values for the
hyperparameters of the prior distributions. It seems that all posterior draws come from sta-
tionary distributions, as suggested by the diagnostics and posterior plots.

The 95% symmetric credible intervals for public capital, private capital, employment,
and unemployment, are (-2.54e-02, -2.06e-02), (2.92e-01, 2.96e-01), (7.62e-01, 7.67e-01) and
(-5.47e-03, -5.31e-03), respectively. The posterior mean elasticity estimate of public capital
to gsp is -0.023, that is, an increase by 1% in public capital means a 0.023% decrease in
gross state product. The posterior mean estimates of private capital and employment elastic-
ities are 0.294 and 0.765, respectively. In addition, a 1% increase in the unemployment rate
means a decrease of 0.54% in gsp. It seems that all these variables are statistically relevant.
In addition, the posterior mean estimates of the variance associated with the unobserved
heterogeneity and stochastic errors are 1.06e-01 and 1.45e-03. We obtained the posterior
chain of the proportion of the variance associated with the unobserved heterogeneity (see
Figure 15). The 95% symmetric credible interval is (0.98, 0.99) for this proportion, that is,
unobserved heterogeneity is very important to explain the total variability.

Binary and count models: The effects of health care reforms and doctor visits
in Germany
We used the dataset 9VisitDoc.csv provided by Winkelmann (2004) (see http://qed.econ.

queensu.ca/jae/2004-v19.4/winkelmann/ for details). First of all, we analyzed the deter-
minants of a binary variable (DocVis) which is equal to 1 if an individual visited a physician
in the last three months, and 0 otherwise. The dataset contains 32,837 observations of 9,197
individuals in an unbalanced panel over the years 1995–1999 from the German Socioeconomic
Panel Data.

The specification to type into the main equation box of the fixed effects is

DocVis ∼ Age + Male + Educ + Married + Sozh + LogInc,

where this specification controls for age, a gender indicator, years of schooling, an indicator
of marital status, whether the individual receives welfare payments, and the logarithm of
monthly gross income.
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Figure 15: Posterior distribution: Proportion of variance associated with unobserved het-
erogeneity

We assumed that the unobserved heterogeneity is associated with self perception of health
status. So, we type ∼ GoodHealth + BadHealth into the main equation box of random ef-
fects in the hierarchical logit model. In addition, we typed id in the name of the grouping
variable, as this identifies the individuals in our dataset. We set 10,000 MCMC iterations
plus 1,000 burn-in, and a thinning parameter equal to 1. We also set all hyperparameters to
their default values. Bayesian inference in this model takes several minutes.

The results suggest that age and income increase the probability of visiting the physician,
the posterior estimates have 95% symmetric credible intervals equal to (2.25e-02, 2.93e-02)
and (8.05e-02, 2.48e-01), whereas men have a lower probability of visiting a physician, the
95% credible interval is (-1.02, -0.93). The posterior mean of the variances of the unobserved
heterogeneity associated with the bad and good health status are 0.51 and 0.88, and the
variance of the unobserved heterogeneity not associated with these variables is 1.81. The
posterior mean of the variance associated with the stochastic error is 0.14.

We ran the previous setting taking as dependent variable the number of doctor visits in the
last three months (DocNum), so we used the hierarchical Poisson model. The results suggest
that on average older individuals visit physicians more frequently; the 95% credible interval
is (9.87e-03, 1.31e-02). In particular, one more year of age increases by 1.15% the number of
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visits, on average. On the other hand, men have, on average, 39.7% (exp(−0.506)− 1) fewer
visits to physicians than do women. The 95% credible interval is (-0.54, -0.47). It seems that
income is not a relevant regressor in this setting, the 95% credible interval is (-0.01, 0.06). We
found in this application that the covariance between the unobserved heterogeneity between
self perceptions of health status is negative; the 95% credible interval is (-0.34, -0.18) with a
posterior median equal to -0.26.

3.4 Bayesian model averaging

Continuous response: Determinants of export diversification
We used the dataset provided by Jetter and Ramı́rez Hassan (2015) to analyze the deter-
minants of export diversification. The dataset named 10ExportDiversificationHHI.csv con-
tains information about 36 potential determinants of export diversification measured using
the Herfindahl–Hirschman Index (avghhi) for 104 countries (see Jetter and Ramı́rez Hassan
(2015) for details). This setting implies 68.7 billion models (236).

We implemented three Bayesian model average (BMA) strategies: Bayesian information
criterion approximation (BIC), Markov chain Monte Carlo model composition (MC3), and
instrumental variable (IVBMA). The former takes into account possible endogeneity between
export diversification and gross domestic product.

Regarding BMA using the BIC approximation, we set 50 (default value) for OR. This
parameter defines the number of best models to take into account in our BMA strategy (see
subsection 5.5 for details). We obtained a table where we can see the posterior inclusion
probability (PIP), expected value, standard deviation, and posterior mean estimates asso-
ciated with the best models for each variable. The best models are defined using posterior
model probabilities, which appear at the bottom of the table, where we also see the number
of variables associated with each model as well as the coefficients of determination and BIC
values. Our GUI also produces two csv files. The first one is Best Models.csv, where we
have by row the best models, and the variables by columns, a 1 indicates the presence of the
specific variable in the model’s specification, and a 0 its absence. The last column in this file
is the posterior model probability. The second one is Descriptive Statistics.csv, where we see
the posterior inclusion probability, expected value, and standard deviation of each variable.

Following Kass and Raftery (1995)’s suggestions, we found that there is very strong ev-
idence that being a former colony of Portugal, the total net primary enrollment, and the
total natural resources rents as percentage of GDP are determinants of export diversifica-
tion. Their expected values are 0.15, -0.006 and 0.008, respectively, which means that there
are negative effects of having been a colony of Portugal and of having natural resources on
export diversification. Recall that higher values of HHI indicate less diversification.

We also ran this application using the MC3 strategy with 10,000 MCMC iterations. We
got results similar to those with the BIC approximation.
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We estimated an instrumental variable BMA to take into account possible endogeneity
between export diversification and GDP using 20,000 MCMC iterations plus a burn-in equal
to 5,000, where there is one endogeneous variable (GDP). In particular, we used the files
11ExportDiversificationHHI.csv and 12ExportDiversificationHHIInstr.csv. The first file has
the dependent variable in the first column (avhhhi) followed by the endogenous variable
(avglgdpcap), the constant term (a column of 1’s) and exogenous regressors. The second file
has the instrumental variables, which are geographical, cultural, and colonial factors.

Our GUI displays first the outcomes of the second stage equation (main equation), and
then, the first stage equation (instrumental equation). We can download three csv files: BMA
Results First Stage.csv, BMA Results Second Stage.csv and Posterior chains.csv. The first
two files have the same structure: posterior inclusion probabilities and expected values. We
can see from these files that educational levels and governance performance are the most
important variables to foster gross domestic product (PIP=100), primary enrollment fosters
export diversification (PIP=79.5), whereas natural resources discourages it (PIP=97.1). The
latter file has the posterior draws where the name beta is associated with the variables in
the main equation (second stage), and gamma is associated with the instrumental variable
equation (first stage). Lastly, we have the posterior draws of the covariance matrix of the
stochastic errors in the first and second stage equations. We can see in Figure 16 this poste-
rior density, which has a 95% symmetric credible interval equal to (-0.014, 0.024), suggesting
that there are no endogeneity issues.

Binary response: Determinants of Internet adoption in Medelĺın
We used the file 13InternetMed.csv provided by Ramı́rez-Hassan (2019). The dependent vari-
able is an indicator of Internet adoption (internet) for 5,000 households in Medelĺın (Colom-
bia) during the period 2006–2014. This dataset contains information about 18 potential
determinants. This means 262,144 (218) potential models just taking into account variable
uncertainty.

The results displayed in our GUI are the posterior inclusion probabilities, posterior means
and standard deviations, as well as the posterior means of the parameters associated with
the best models, which are found using posterior model probabilities. We also generated
the files Best Models.csv and Descriptive Statistics.csv. Using the default values for the Oc-
cam’s window parameters, we observed that the best model has a posterior model probability
(PMP) equal to 31%, and the second best model has a PMP equal to 30%. It seems that
age, squared age, years of education of the head of the household, total expenses, having pay
TV, any household member studying, and number of children in the household are statisti-
cally relevant determinants of Internet adoption. For instance, taking into account that we
have the logarithm of household expenses as regressor, we obtained an odds ratio to income
elasticity equal to 1.48, that is, a 1% income increase implies a 1.48% odds ratio increase.
This parameter estimate takes into account model (variable) uncertainty.

Continuous positive response: The market for soccer players in Europe
We used the dataset 14ValueFootballPlayers.csv where there are 26 potential determinants
of the market value of a stratified sample of 335 soccer players in the five most impor-
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Figure 16: Posterior distribution: Covariance between HHI and GDP in instrumental vari-
able Bayesian model average

tant leagues in Europe (see Serna Rodŕıguez et al. (2018) for details). This setting implies
67,108,864 (226) potential models, which are analyzed using the BIC approximation of BMA
assuming a gamma distribution, and setting default values for Occam’s window.

The results suggest that performance, age at decreasing rate, having participated in senior
and under-21 national team, scored goals, participating in the UEFA champions league in the
2015–2016 season, and team experience, increase market value. The best ten models add 33%
of the posterior model probabilities. In addition, we used the same dataset to carry out BMA
using the BIC approximation assuming a normal distribution, and a BMA using MC3, ob-
taining the same relevant variables. The results of estimating a generalized linear model with
the gamma family using this dataset suggest that there are other relevant variables, such as
experience, squared experience, conmebol and premier league indicators, public attendance,
and change of team in the last season, which are also statistically significant variables at 5%.
However, the latter procedure does not take into account model (variable) uncertainty. As a
consequence, there is an underestimation of the standard errors, which implies an overesti-
mation of the statistical tests to reject the null hypothesis of no relevant regressor.

Count response: Determinants of number of children
We used the dataset 15Fertile2.csv from (Wooldridge, 2012, p. 547) which has informa-
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tion about 1,781 women from Botswana in 1988 (for details, see https://rdrr.io/cran/

wooldridge/man/fertil2.html, and take into account that we deleted some variables and
omitted observations with NA values). In this case our dependent variable is the number of
children ever born (ceb), which is a count variable, as a function of 19 potential determinants.
We found that the best model, for which the PMP is equal to 27%, has as regressors age,
squared age, age at first birth, use birth control, husband’s years of education, woman’s years
of education, and living in an urban area. The first five variables have PIPs equal to 100. For
instance, we found that women using birth control have approximately 15% fewer children on
average than women who are not using birth control. The results of estimating a generalized
linear model with the Poisson family using this dataset suggest that having a bicycle is a
relevant determinant of the number of children, at the 5% significance level. However, this
variable has a PIP equal to 19.3%.

4 Bayesian framework: A brief summary of theory and com-
putation

The theoretical point of departure is the Bayes rule, which formally establishes how prior
beliefs are updated with new information (data),

π(θ|y) =
p(y|θ)π(θ)

p(y)
∝ p(y|θ)π(θ),

where π(θ|y) is the posterior distribution, π(θ) is the prior, p(y|θ) is the likelihood, and
p(y) =

∫
Θ p(y|θ)π(θ)dθ is the marginal likelihood.

The Bayesian framework allows reporting the full posterior distribution. In case only one
value of the posterior distribution should be reported, decision theory offers an elegant frame-
work, for instance, a quadratic loss function implies reporting the posterior mean, whereas
an absolute value loss function implies reporting the posterior median. Another way to sum-
marize a posterior distribution is through intervals (univariate) or regions (multivariate). For
instance, we can report the (1-α)% symmetric credible interval, where each tail of the distri-
bution contains (α/2)% of the probability, or the highest posterior density credible interval,
Θα = {θ ∈ Θ : π(θ|y) ≥ k(α)}, k(α) is the largest constant such that p(Θα|y) ≥ 1− α.

There are other appealing characteristics of this statistical framework, namely: there
is a solid probability theory framework for hypothesis testing based on posterior odds (H1

vs H2), PO12 = p(H1|y)
p(H2|y) = p(y|H1)

p(y|H2) ×
π(H1)
π(H2) , the first term is called the Bayes factor, and

the second term is the prior odds, π(Hj) is the prior probability of hypothesis Hj , and
p(y|Hj) =

∫
Θj
p(y|θj , Hj)π(θj |Hj)dθj (Kass and Raftery, 1995). With this framework it

is also easy to take into account model uncertainty based on posterior model probabilities,

p(Mj |y) =
π(Mj)p(y|Mj)∑M

m=1 π(Mm)p(y|Mm)
, where π(Mj) is the prior model probability, and p(y|Mj) =∫

Θj
p(y|θj ,Mj)π(θj |Mj)dθj is the marginal likelihood under model j, j = 1, 2, . . . ,M . In

addition, it is also easy to carry out an inference of nonlinear functions of parameter esti-
mates without requiring extra computational effort (re-sampling techniques) or asymptotic
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results (plug-in approach based on delta method). In a Bayesian setting, we can have pa-
rameters that are not identified, but carry out an inference of functions of these parameters
which are well identified. Finally, predictive distributions acknowledge parameter uncertainty,
π(yNew|y) =

∫
Θ f(yNew|y,θ)π(θ|y)dθ ≈ 1

S

∑S
s=1 f(yNew|y,θ(s)), θ(s) ∼ π(θ|y).

The main issue regarding estimation in the Bayesian approach is how to obtain draws
from the posterior distribution when this distribution is not a standard one. The Metropolis–
Hastings (M–H) algorithm is one of the most popular techniques to carry out this task
(Metropolis et al., 1953; Hastings, 1970). Given a target distribution π(θ|y), θ ∈ Θ ⊆
Rk, such that π(dθc|y) =

∫
Θ p(θ, dθc)π(θ|y)dθ where p(θ, dθc) is a conditional distribution

function (transition kernel) that represents the probability of moving from θ to a point in
dθc, the M–H algorithm establishes

p(θ, dθc) = q(θ,θc)α(θ,θc)dθc +

[
1−

∫
Θ
q(θ,θc)α(θ,θc)dθc

]
δθ(dθc),

where q(θ,θc) is a proposed density function to draw candidates (θc), α(θ,θc) = min
{
π(θc|y)q(θc,θ)
π(θ|y)q(θ,θc) , 1

}
=

min
{
p(y|θc)π(θc)q(θc,θ)
p(y|θ)π(θ)q(θ,θc) , 1

}
is the probability of moving from θ to θc,8 δθ(dθc) is equal to 1 if

θ ∈ dθc and 0 otherwise, and
[
1−

∫
Θ q(θ,θc)α(θ,θc)dθc

]
is the probability that the chain

remains at θ (Chib and Greenberg, 1995).9 The intuition behind the construction of this
transition kernel is to transform a transition kernel that does not satisfy the reversibility
condition into one that satisfies it.10 The algorithm is the following:

Algorithm A1 The Metropolis–Hastings algorithm

1: Initialized at an arbitrary value θ(0).
2: Draw θc from q(θ(s−1), ·), s = 1, 2, . . . , S, and u from U(0, 1).
3: If u ≤ α(θ(s−1),θc), set θ(s) = θc, else θ(s) = θ(s−1).
4: Repeat this process S times, s = 1, 2, . . . , S iterations.
5: Return the values

{
θ(b),θ(b+d), . . . ,θ(S)

}
where b and d are burn-in and thinning param-

eters, respectively.

Observe that the M–H algorithm does not depend on the marginal likelihood, therefore
it is not necessary to calculate the integral, which can be very computationally demanding.
This algorithm requires setting the proposed density, and generates autocorrelated chains by
construction. The chain remains at θ(s−1) if θc is rejected. It is necessary to discard some
initial draws in order to avoide their dependence on the initial value. There must be enough
iterations to achieve convergence to the target distribution.

Regarding the density of the proposal, we implement in this GUI the random-walk pro-
posal and the tailored proposal. The former generates θc = θ(s−1) + ε(s), where the distribu-
tion of ε(s) is specified. If this distribution is symmetric around zero, then q(θ,θc) = q(θc,θ).

8π(θ|y)q(θ,θc) 6= 0 is usually satisfied in practice.
9Observe that α(θ,θc) depends on y, and the proposed q(θ,θc) can depend or not depend on y.

10Intuitively, the reversibility condition, π(θ|y)q(θ,θc) = π(θc|y)q(θc,θ), implies that the probability of
moving from θ to θc is equal that the probability of moving from θc to θ.
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The tailored proposal is based on a fat-tailed distribution, whose mean is the maximum of
the logarithm of the posterior distribution, θ̂, and scale matrix equal to the negative of the

inverse Hessian at the maximum,
(
−∂2lnπ(θ|y)

∂θ∂θ′

∣∣∣
θ̂

)−1
.

A crucial point associated with the proposed densities is the acceptance rate. Low or high
acceptance rates are not ideal. A low rate implies poor mixing, that is, the chain does not
move through the support of the posterior distribution. A high acceptance rate implies that
the chain will converge too slowly. A sensible value depends on the dimension of the param-
eter space. A rule of thumb in case the dimension is less than or equal to 2 is 0.50. If the
dimension is greater than 2, the acceptance rate should be around 0.25 (Roberts et al., 1997).

Regarding convergence issues, we implement some diagnostics in order to check the ade-
quacy of the posterior chains (Plummer et al., 2016). In particular, trace plots should look
stable, and autocorrelation plots should decrease very quickly. In addition, we implement
Geweke’s test (Geweke, 1992), which is a simple two-sample test of means. If the mean of
the fraction in the first window (10%) is not significantly different from the mean of the
fraction in the second window (50%), then we conclude that the target distribution has con-
verged. The test of Raftery and Lewis (Raftery and Lewis, 1992) is designed to calculate
the approximate number of iterations (S), burn–in (b), and thinning parameter (d) required
to estimate p [H(θ) ≤ h], H(θ) : Rk → R, given a specific quantile of interest (q), preci-
sion (r), and probability (p). Their diagnostic is based on the dependence factor, I = S+b

SMin
,

SMin = Φ−1
(

1
2(p+ 1)

)2
q(1−q)/r2, Φ(·) is the normal distribution function. Values of I much

greater than 5 indicate a high level of dependence. Heidelberger and Welch’s test (Heidel-
berger and Welch, 1983) is based on a Cramer-von-Mises statistic to test the null hypothesis
that the sampled values, θ(s), come from a stationary distribution, CVM(BS) =

∫ 1
0 BS(t)2dt,

BS(t) = (S[St]− [St] θ̄S)/(Sp(0))1/2, SS =
∑S

s=1 θ
(s), θ̄S = SS/S, p(0) is the spectral density

at 0, and 0 ≤ t ≤ 1. BS(t) converges in distribution to the Brownian bridge under the null
hypothesis. This test is recursively applied, until either the null hypothesis is not rejected,
or t = 50% of the chain has been discarded. Then, the half-width test calculates a 95%
confidence interval for the mean, using the portion of the chain which passed the stationarity
test. If the ratio between the half-width of this interval and the mean is lower than 0.1, this
test is passed.

Another popular MCMC algorithm that is extensively used in our models is the Gibbs
sampler (Geman and Geman, 1984; Gelfand and Smith, 1990). This can be seen as a par-
ticular case of the M–H algorithm where the acceptance rate is equal to 1 (Gelman and
Rubin, 1992; Robert and Casella, 2004). This is based on the fact that the full conditional
distributions perfectly summarize the joint density (Hammersley–Clifford theorem),11 as a
consequence, it is necessary to have the full set of conditional posterior distributions to im-
plement it. The algorithm is the following:

We should highlight that the Gibbs sampler can be applied in settings where the condi-

11This statement requires the positivity condition, if π(θl|y) > 0, then π(θ|y) > 0, l = 1, 2, . . . , k.
12Note that θl, l = 1, 2, . . . , k can be either scalars or vectors in Algorithm A2.
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Algorithm A2 The Gibbs sampler algorithm

1: Given θ = [θ1,θ2, . . . ,θk], initialized at an arbitrary value θ
(0)
−1, θ

(0)
−l =

[θ1,θ2, . . . ,θl−1,θl+1, . . . ,θk].
12

2: Draw θ
(s)
1 from π(θ1|θ(s−1)

−1 ;y).

3: Draw θ
(s)
2 from π(θ2|θ(s)

1 ,θ
(s−1)
3 , . . . ,θ

(s−1)
k ;y).

4:
...

5: Draw θ
(s)
k from π(θk|θ

(s)
−k;y).

6: Repeat this process S times, s = 1, 2, . . . , S iterations.
7: Return the values

{
θ(b),θ(b+d), . . . ,θ(S)

}
where b and d are burn-in and thinning param-

eters, respectively.

tional posterior distributions are not standard. In this case, Metropolis-within-Gibbs algo-

rithm can be adopted. Rather than simulating θ
(s)
l ∼ π(θl|θ1,θ2, . . . ,θl−1,θl+1, . . . ,θk), we

can implement a M–H step. The theoretical validity of this strategy is exactly the same as
with the original Gibbs sampler (Robert and Casella, 2010).

After this brief introduction to the general Bayesian framework, we present specific details
of models in our GUI in the next section.

5 Models

5.1 Univariate models

Normal–Inverse Gamma: The Gaussian linear model specifies y = Xβ + µ such that
µ ∼ N (0, σ2In) is an stochastic error, X is an n × k matrix of regressors, β is a k dimen-
sional vector of coefficients, y is an n dimensional vector of a dependent variable, and n is
the number of units.

The conjugate independent priors for the parameters are β ∼ N (β0,B0) and σ2 ∼
IG(α0/2, δ0/2). Given the likelihood function, p(β, σ2|y,X) = (2πσ2)−

n
2 exp

{
− 1

2σ2 (y −Xβ)′(y −Xβ)
}

,
the conditional posterior distributions are

β|σ2,y,X ∼ N (β∗, σ2B), 13

σ2|β,y,X ∼ IG(α∗/2, δ∗/2), 14

where B = (B−1
0 + σ−2X ′X)−1, β∗ = B(B−1

0 β0 + σ−2X ′Xy), α∗ = α0 + n and δ∗ =
δ0 + (y −Xβ)′(y −Xβ).

We can employ the Gibbs sampler in this model due to having standard conditional pos-
terior distributions.

13N denotes a normal density.
14IG denotes an inverse gamma density.
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Logit: In the logit model the dependent variable is binary, then it follows a Bernoulli

distribution, yi
i.n.d.∼ B(πi),

15 that is p(yi = 1) = πi, such that πi =
exp{x′

iβ}
1+exp{x′

iβ}
. We specify a

Gaussian distribution as prior β ∼ N (β0,B0).

The logit model does not have a standard posterior distribution. Then, a random walk
Metropolis–Hastings algorithm is used to obtain draws from the posterior distribution (Mar-
tin et al., 2011, 2018). In particular, the proposal is multivariate Gaussian centered at the
current value, with covariance matrix S(B−1

0 +Σ̂−1)−1S, where S = sIdimβ, s > 0 is a tuning

parameter,16 and Σ̂ is the sample covariance matrix from the maximum likelihood estimation.

Probit: The probit model also has as dependent variable a binary outcome. In this
case, there is a latent variable (y∗i , unobserved) that defines the structure of the estimation

problem. In particular, yi =

{
0, y∗i ≤ 0
1, y∗i > 0

}
such that y∗i = x′iβ + µi, µi

i.i.d.∼ N (0, 1).17 This

implies p(yi = 1) = πi = Φ(x′iβ).

Albert and Chib (1993) implemented data augmentation (Tanner and Wong, 1987) to
apply a Gibbs sampling algorithm in this model. Augmenting this model with y∗i , we can
have the likelihood contribution from observation i, p(yi|y∗i ) = 1yi=01y∗i≤0 +1yi=11y∗i>0, where
1A is an indicator function that takes the value of 1 when condition A is satisfied.

The posterior distribution is π(β,y∗|y,X) ∝
∏n
i=1

[
1yi=01y∗i≤0 + 1yi=11y∗i>0

]
×Nn(y∗|Xβ, In)×

Nn(β|β0,B0) when taking a Gaussian distribution as prior β ∼ N (β0,B0). This implies

y∗i |β,y,X ∼
{
T N(−∞,0](x

′
iβ, 1) , yi = 0

T N(0,∞)(x
′
iβ, 1) , yi = 1

}
, 18

β|y∗,X ∼ N (β∗,B),

where B = (B−1
0 +X ′X)−1, and β∗ = B(B−1

0 β0 +X ′y∗).

Multinomial probit: The multinomial probit model is used to model mutually exclusive

discrete outcomes or qualitative response variables. We observe yil =

{
1, y∗il ≥ max(y∗i )
0, otherwise

}
such that y∗i = Xiδ + µi, µi

i.i.d.∼ N (0,Σ), y∗i is an unobserved latent L dimensional vector,
Xi = [(1 c′i)⊗ IL Ai] is an L × j matrix of regressors for each alternative, l = 1, 2, . . . , L,
j = L× (1 + dim {ci}) + a, ci is a vector of the individuals’ specific characteristics, Ai is an
L× a matrix of alternative-varying regressors, a is the number of alternative-varying regres-
sors, and δ is a j dimensional vector of parameters. We take into account simultaneously
the alternative-varying regressors (alternative attributes) and alternative-invariant regressors

15B denotes a Bernoulli density.
16Tuning parameters should be set in such a way that one obtains reasonable diagnostic criteria.
17The variance in this model is set to 1 due to identification restrictions. Observe that multiplying y∗i by a

positive constant does not affect yi.
18T N denotes a truncated normal density.
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(individual characteristics).19 y∗i can be stacked up into a multiple regression with correlated
stochastic errors, y∗ = Xδ + µ, where y∗′ = [y∗1

′,y∗2
′, . . . ,y∗n

′], X ′ = [X ′1,X
′
2, . . . ,X

′
n], and

µ′ = [µ′1,µ
′
2, . . . ,µ

′
n].

Following the practice of expressing y∗il
′ relative to y∗iL

′ by lettingw′i = [wi1, wi2, . . . , wiL−1],
wil = y∗il−y∗iL, we can write wi = Riβ+εi, εi ∼ N (0,Ω), where Ri = [(1 c′i)⊗ IL−1 ∆Ai] is
an L−1×k matrix where ∆Ai = Ali−ALi, l = 1, 2, . . . , L−1, that is, the last row ofAi is sub-
tracted from each row of Ai, and β is a k dimensional vector, k = (L−1)×(1+dim {ci})+a.
Observe that β contains the same last a elements as δ, that is, alternative specific attributes
coefficients, but the first (L− 1)× (1 + dim {ci})-th elements are δjl − δjL, j = 1 + dim {ci},
l = 1, 2, . . . , L − 1, that is, the difference between the coefficients of each qualitative re-
sponse and the L-th alternative for the individuals’ characteristics. This makes it difficult
to interpret the multinomial probit coefficients. Note that in multinomial models, for each
alternative specific attribute, it is only required to estimate one coefficient for all alternatives,
whereas for individuals’ characteristics (non-alternative specific regressors), it is necessary to
estimate L− 1 coefficients (the coefficient of the base alternative is set equal to 0).

The likelihood function in this model is p(β,Ω|y,R) =
∏n
i=1

∏L
l=1 p

yil
il where pil = p(y∗il ≥

max(y∗i )). We assume independent priors, β ∼ N (β0,B0) and Ω−1 ∼ W(α0,Σ0).20 We can
employ Gibbs sampling in this model because this is a standard Bayesian linear regression
model when data augmentation in w is used. The posterior conditional distributions are

β|Ω,w ∼ N (β∗,B),

Ω−1|β,w ∼ W(α∗,Σ∗),

where B = (B−1
0 + X∗′X∗)−1, β∗ = B(B−1

0 β0 + X∗′w∗), Ω−1 = C ′C, X∗i
′ = C ′Ri,

w∗i = C ′wi, X
∗ =


X∗1
X∗2

...
X∗n

, α∗ = α0 + n, Σ∗ = (Σ0 +
∑n

i=1(wi −Riβ)′(wi −Riβ))−1.

We can collapse the multinomial vector yi into the indicator variable di =
∑L−1

l=1 l ×
Imax(wl)=wil .

21 Then the distribution of wi|β,Ω−1, di is an L− 1 dimensional Gaussian dis-

tribution truncated over the appropriate cone in RL−1. McCulloch and Rossi (1994) propose
drawing from the univariate conditional distributions wil|wi,−l,β,Ω

−1, di ∼ T NIil(mil, τ
2
ll),

where Iil =

{
wil > max(wi,−l, 0), di = l
wil < max(wi,−l, 0), di 6= l

}
, and permuting the columns and rows of Ω−1 so

that the l-th column and row is the last,

Ω−1 =

[
Ω−l,−l ω−l,l
ωl,−1 ωl,l

]−1

=

[
Ω−1
−l,−l + f ′Ef −fτ−2

ll

−τ−2
ll f

′ τ−2
ll

]
19Note that this model is not identified if Σ is unrestricted. The likelihood function is the same if a scalar

random variable is added to each of the L latent regressions.
20W denotes the Wishart density.
21Observe that the identification issue in this model is due to scaling wil by a positive constant and does

not change the value of di.
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where f = Ω−l,−lω−l,l, τ
2
ll = ωll −ωl,−lΩ−1

−l,−1ω−l,l, mil = r′ilβ + f ′(wi,−l −Ri,−lβ), wi,−l is
an L− 2 dimensional vector of all components of wi excluding wil, ril is the l-th row of Ri,
l = 1, 2, . . . , L− 1.

The identified parameters are obtained by normalizing with respect to one of the diagonal
elements 1

ω0.5
1,1
β and 1

ω1,1
Ω.22

Multinomial logit: The multinomial logit model is also used to model mutually exclu-
sive discrete outcomes or qualitative response variables. We consider the multinomial mixed
logit model (not to be confused with the random parameters logit model), that is, we take into
account simultaneously alternative-varying regressors (conditional) and alternative-invariant
regressors (multinomial).23

In this setting there are L mutually exclusive alternatives, and the dependent variable yi
is equal to l if the lth alternative is chosen by individual i, l = {1, 2, . . . , L}. The likelihood

function is p(β|y,X) =
∏n
i=1 p(yi = l|β,X), where p(yi = l|β,X) =

exp{x′ilβ}∑L
j=1 exp{x′ijβ}

, X is an

nL × k matrix, k = k1 + k2 is the total number of regressors, k1 and k2 are the number of
alternative-varying and alternative-invariant regressors, respectively. In addition, we assume
β ∼ N (β0,B0) as prior distribution.

As the multinomial logit model does not have a standard posterior distribution, we pro-
pose a “tailored” Metropolis–Hastings algorithm as the proposed distribution, in particular,
a multivariate Student’s t distribution with v degrees of freedom (tuning parameter), mean
equal to the maximum likelihood estimator, and scale equal to the inverse of the Hessian
matrix.

Ordered probit: The ordered probit model is used when there is a natural order in
the categorical response variable. In this case, there is a latent variable y∗i = x′iβ + µi,

µi
i.i.d.∼ N (0, 1) such that yi = l if and only if αl−1 < y∗i ≤ αl, l = {1, 2, . . . , L}, where

α0 = −∞, α1 = 0 and αL = ∞.24 Then, p(yi = l) = Φ(αl − x′iβ) − Φ(αl−1 − x′iβ), and
the likelihood function is p(β,α|y,X) =

∏n
i=1 p(yi = l|β,α,X). The independent priors

of this model are β ∼ N (β0,B0) and γ ∼ N (γ0,Γ0), γ = [γ2, γ3, . . . , γL−1]′, such that

α =
[
exp {γ2} ,

∑3
l=2 exp {γl} , . . . ,

∑L−1
l=2 exp {γl}

]′
.

This model does not have a standard conditional posterior distribution for γ (α), but it
does have a standard conditional distribution for β once data augmentation is used. Then,
we use a Metropolis-within-Gibbs sampling algorithm. In particular, we use Gibbs sampling
algorithms to draw β and y∗,

β|y∗,α,X ∼ N (β∗,B),

22Our GUI takes into account this identification restriction to display the outcomes of the posterior chains.
23The multinomial mixed logit model can be implemented as a conditional logit model.
24Identification issues necessitate setting the variance in this model equal to 1 and α1 = 0. Observe that

multiplying y∗i by a positive constant or adding a constant to all of the cut-offs and subtracting the same
constant from the intercept does not affect yi.

32



whereB = (B−1
0 +X ′X)−1, β∗ = B(B−1

0 β0+X ′y∗), and y∗i |β,α,y,X ∼ T N(αyi−1,αyi )
(x′iβ, 1).

We use a random-walk Metropolis–Hastings algorithm for γ that has as proposal a Gaus-
sian distribution with mean equal to the current value, and covariance matrix s2(Γ−1

0 +
Σ̂−1
γ )−1, where s > 0 is a tuning parameter, and Σ̂γ is the sample covariance matrix associ-

ated with γ from the maximum likelihood estimation.

Negative binomial: The dependent variable in the negative binomial model is a non-
negative integer or count. In contrast to the Poisson model, the negative binomial model
takes into account over-dispersion. The Poisson model has equal mean and variance.

We assume that yi
i.n.d.∼ NB(γ, θi), that is, the density function for individual i is

Γ(yi+γ)
Γ(γ)yi!

θyii (1 − θi)γ , the success probability is θi = λi
λi+γ

, λi = exp {x′iβ} and γ = exp {α}.
The independent priors for this model are β ∼ N (β0,B0) and α ∼ G(α0, δ0).25

This model does not have standard conditional posterior distributions, so we use a
random-walk Metropolis–Hastings algorithm where the proposed distribution for β is Gaus-
sian centered at the current stage with covariance matrix s2

βΣ̂β where sβ is a tuning parameter

and Σ̂β is the maximum likelihood covariance estimator. In addition, the proposal for α is
normal centered at the current value, with variance s2

ασ̂
2
α where sα is a tuning parameter and

σ̂2
α is the maximum likelihood variance estimator.

Tobit: The dependent variable is partially observed in Tobit models due to sampling
schemes, whereas the regressors are completely observed. In particular,

yi =


L , y∗i < L

y∗i , L ≤ y∗i < U
U , y∗i ≥ U

 ,

where y∗i
i.n.d.∼ N (x′iβ, σ

2).26

We use conjugate independent priors β ∼ N (β0,B0) and σ2 ∼ IG(α0/2, δ0/2), and data

augmentation using y∗C such that y∗Ci
i.n.d.∼ N (x′iβ, σ

2), yCi =
{
y∗
CLi
∪ y∗

CUi

}
are lower and

upper censored data. This allows implementing the Gibbs sampling algorithm (Chib, 1992).

Then, π(β, σ2,y∗|y,X) ∝
∏n
i=1

[
1yi=L1y∗

CL
i

<L + 1L≤yi<U + 1yi=U1y∗
CU
i

≥U

]
N (y∗i |x′iβ, σ2) ×

Nn(β|β0,B0)× IG(σ2|α0/2, δ0/2)

The posterior distributions are

y∗Ci |β, σ
2,y,X ∼

{
T N(−∞,L)(x

′
iβ, σ

2) , yi = L

T N[U,∞)(x
′
iβ, σ

2) , yi = U

}
,

β|σ2,y,X ∼ N (β∗, σ2B),

25G denotes a gamma density.
26We can set L or U equal to −∞ or ∞ to model data censored in just one side.
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σ2|β,y,X ∼ IG(α∗/2, δ∗/2),

where B = (B−1
0 + σ−2X ′X)−1, β∗ = B(B−1

0 β0 + σ−2X ′y), α∗ = α0 + n and δ∗ =
δ0 + (y∗ −Xβ)′(y∗ −Xβ).

Quantile: In quantile regression the location parameters vary according to the quan-
tile of the dependent variable. Let qτ (xi) = x′iβτ denote the τ -th (0 < τ < 1) quantile

regression function of yi given xi such that yi = x′iβτ + µi where
∫ 0
−∞ fτ (µi)dµi = τ . In

particular, fτ (µi) = τ(1− τ)exp {µi(τ − Iµi<0)} (asymmetric Laplace distribution). Kozumi
and Kobayashi (2011) propose the location-scale mixture of normals with a representation
given by µi = θei + ψ

√
eizi where θ = 1−2τ

τ(1−τ) , ψ2 = 2
τ(1−τ) , ei ∼ E(1) and zi ∼ N (0, 1),

ei ⊥ zi.
27 As a consequence of this representation and the fact that the sample is i.i.d.,

p(y|βτ , e,X) ∝
(∏n

i=1 e
−1/2
i

)
exp

{
−
∑n

i=1
(yi−x′iβτ−θei)2

2ψ2ei

}
.

Taking as prior a normal distribution for βτ , that is, βτ ∼ N (βτ0,Bτ0), and using data
augmentation for e, we can implement a Gibbs sampling algorithm in this model. The
posterior distributions are

βτ |e,y,X ∼ N (β∗τ ,Bτ ),

ei|βτ ,y,X ∼ GIG(1/2, α∗i , δ
∗
i ),

28

where Bτ =
(
B−1
τ0 +

∑n
i=1

xix
′
i

ψ2ei

)−1
, β∗τ = Bτ

(
B−1
τ0 βτ0 +

∑n
i=1

xi(yi−θei)
ψ2ei

)
, α∗i = ((yi −

x′iβτ )2/ψ2)0.5 and δ∗i = (2 + θ2/ψ2)0.5.

5.2 Multivariate models

Multivariate regression: This model is used when there are m multiply dependent vari-
ables which share the same set of regressors, and their stochastic errors are contempora-
neously correlated. In particular, Y = [y1,y2, . . . ,ym] is an n × m matrix that is gen-
erated by Y = XB + U where X is an n × k matrix, B = [β1,β2, . . . ,βm] is a k ×
m matrix of parameters, and U = [u1,u2, . . . ,um] is a matrix of stochastic random er-
rors such that ui ∼ N (0,Σ), i = 1, 2, . . . , n is each row of U . Then, p(B,Σ|Y ,X) ∝
|Σ|−n/2 exp

[
−1

2 tr(Y −XB)′(Y −XB)Σ−1
]
, where tr denotes the trace operator.

Rossi et al. (2005) propose the natural conjugate priors π(vec(B)|Σ) ∼ N (vec(B0),Σ⊗
∆0) and π(Σ) ∼ IW(α0,Σ0) where vec is the vectorization operator and ⊗ is the Kronecker
product. Therefore, the conditional posterior distributions are

β|Σ,Y ,X ∼ N (β∗,Σ⊗∆∗),

Σ|Y ,X ∼ IW(α∗,Σ∗), 29

27E denotes an exponential density.
28GIG denotes a generalized inverse Gaussian density.
29IW denotes an inverse Wishart density.
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where ∆∗ = (X ′X+∆−1
0 )−1, β∗ = vec(B∗),B∗ = ∆∗(∆−1

0 B0+X ′XB̂), B̂ = (X ′X)−1X ′Y ,
α∗ = α0 + n and Σ∗ = Σ0 + (Y −XB̂)′(Y −XB̂).

We can use a Gibbs sampling algorithm in this model since the conditional posterior
distributions are standard.

Seemingly unrelated regression: In this model there are m dependent variables
with potentially different regressors, and the stochastic errors are contemporaneously cor-
related. In particular, yj = Xjβj + µj , where βj is a kj vector, j = 1, 2, . . . ,m. Setting
µi = [µ1i, µ2i, . . . , µmi]

′ such that µi ∼ N (0,Σ), and stacking the m equations, we can write
y = Xβ+µ where y = [y′1,y

′
2, . . . ,y

′
m]′, β = [β′1,β

′
2, . . . ,β

′
m]′ is a K dimensional vector, K =∑m

j=1 kj , X is an mn×K block diagonal matrix composed of Xj and µ = [µ′1,µ
′
2, . . . ,µ

′
m]′

such that µ ∼ N (0,Σ⊗In). Then, p(β,Σ|y,X) ∝ |Σ|−n/2 exp
[
−1

2(y −Xβ)′(Σ−1 ⊗ In})(y −Xβ)
]
.

Using independent priors π(β) ∼ N (β0,B0) and π(Σ−1) ∼ W(α0,Σ0), the posterior
distributions are

β|Σ,y,X ∼ N (β∗,B∗),

Σ−1|β,y,X ∼ W(α∗,Σ∗),

where B∗ = (X ′(Σ−1 ⊗ In)X +B−1
0 )−1, β∗ = B∗(B−1

0 β0 +X ′(Σ−1 ⊗ In)y), α∗ = α0 + n
and Σ∗ = (Σ−1

0 +U ′U)−1, where U is an n×m matrix whose columns are yj −Xjβj .

We can employ a Gibbs sampling algorithm with this model since the conditional poste-
rior distributions are standard.

Instrumental variables: This model is used when there are endogeneity problems
caused by feedback, omitted relevant variables, or measurement error in the regressors. So,
we specify the dependent variable as a linear function of one endogenous regressor and some
exogenous regressors. That is, yi = x′eiβ1 +βsxsi+µi where xsi = x′eiγ1 +z′iγ2 +vi, xs is the
variable which generates the endogeneity issues, such that xe are k1 exogenous regressors and

z are k2 instruments. Assuming (ui, vi)
′ i.i.d.∼ N (0,Σ), Σ = [σlm], l,m = 1, 2, the likelihood

function is p(β,γ,Σ|y,X,Z) = 1

(2π)
n
2 |Σ|

n
2
exp

{
−1

2

∑n
i=1(yi − x′iβ, xsi −w′iγ)Σ−1

(
yi − x′iβ
xsi −w′iγ

)}
where β = [β′1, βs]

′, γ = [γ ′1,γ
′
2]′, xi = [x′ei, xsi]

′ and wi = [x′ei, z
′
i]
′.

We get standard conditional posterior densities using the following independent priors
γ ∼ N (γ0,G0), β ∼ N (β0,B0) and Σ−1 ∼ W(α0,Σ0). In particular,

β|γ,Σ,y,X,Z ∼ N (β∗,B∗)

γ|β,Σ,y,X,Z ∼ N (γ∗,G∗)

Σ−1|β,γ,y,X,Z ∼ W(α∗,Σ∗)

whereB∗ = (ω−1
1

∑n
i=1 xix

′
i+B

−1
0 )−1, β∗ = B∗

(
B−1

0 β0 + ω−1
1

∑n
i=1

[
xi

(
yi −

σ12(xsi−w′iγ)
σ22

)])
,

ω1 = σ11−σ2
12/σ22,G∗ = (ω−1

2

∑n
i=1wiw

′
i+G

−1
0 )−1, γ∗ = G∗

(
G−1

0 γ0 + ω−1
2

∑n
i=1

[
wi

(
xsi −

σ12(yi−x′iβ)
σ11

)])
,
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ω2 = σ22−σ2
12/σ11, α∗ = α0+n and Σ∗ =

[
Σ−1

0 +
∑n

i=1

(
yi − x′iβ
xsi −w′iγ

)
(yi − x′iβ, xsi −w′iγ)

]−1

.

We also use a Gibbs sampling algorithm in this model since we have standard conditional
posterior distributions.

Multivariate probit: In the multivariate probit model (Edwards and Allenby, 2003),
the response variable yil = {0, 1} indicates that individual (unit) i makes binary choices

regarding alternatives l, i = 1, 2, . . . , n, l = 1, 2, . . . , L.30 In particular, yil =

{
0, y∗il ≤ 0
1, y∗il > 0

}
such that y∗i = Xiβ + µi

i.i.d.∼ N (0,Σ), y∗i is an unobserved latent L dimensional vector,
Xi is an L × K design matrix of regressors, K = L × k, k is the number of regressors,
and β = [β′1,β

′
2, . . . ,β

′
k]
′, where the βj make up an L dimensional vector of coefficients,

j = 1, 2, . . . , k. We simultaneously take into account the alternative-varying regressors (al-
ternative attributes) and alternative-invariant regressors (individual characteristics).

The likelihood function in this model is p(β,Σ|y,X) =
∏n
i=1

∏L
l=1 p

yil
il where pil = p(y∗il ≥

0). Observe that p(y∗i ≥ 0) = p(Λy∗i ≥ 0), where Λ = diag {λll}, λll > 0. This generates
identification issues. We follow the post processing strategy proposed by Edwards and Al-
lenby (2003) to get identified parameters, that is, β̃ = vec {DΓ} and the correlation matrix

R = DΣD, where D = diag {σll}−1/2 and Γ = [β1,β2, . . . ,βk].
31

We assume independent priors, β ∼ N (β0,B0) and Σ−1 ∼ W(α0,Σ0). We can employ
Gibbs sampling in this model because this is a standard Bayesian linear regression model
when data augmentation in y∗ is used. The posterior conditional distributions are

β|Σ,w ∼ N (β∗,B),

Σ−1|β,w ∼ W(α∗,Σ∗),

y∗il|y∗i,−l,β,Σ−1,yi ∼ T NIil(mil, τ
2
ll)

where B = (B−1
0 + X∗′X∗)−1, β∗ = B(B−1

0 β0 + X∗′y∗∗), Σ−1 = C ′C, X∗i
′ = C ′Xi,

y∗∗i = C ′y∗i , X
∗ =


X∗1
X∗2

...
X∗n

, α∗ = α0 + n, Σ∗ = (Σ0 +
∑n

i=1(y∗i − Xiβ)′(y∗i − Xiβ))−1,

Iil =

{
y∗il > 0, yil = 1
y∗il ≤ 0, yil = 0

}
, mil = x′ilβ+f ′(y∗i,−l−Xi,−lβ), y∗i,−l is an L−1 dimensional vector

of all components of y∗i excluding y∗il, xil is the l-th row of Xi, Xi,−l is Xi after deleting the

l-th row, τ2
ll = 1/σll, and f = −σllωl,−l, σjl is the jl-th element of Σ−1, Σ−1 =


ω′1
ω2
...
ω′L

, ω′l,−l

30These alternatives are not mutually exclusive.
31In a Bayesian setting, we can have a non identified model; however, the posterior of the model parameters

exists given a proper prior distribution (Edwards and Allenby, 2003).
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is the l-th row of Σ−1 extracting the l-th element.

5.3 Hierarchical longitudinal models

Normal: The hierarchical longitudinal normal model establishes yi = Xiβ + Wibi + µi
where yi are ni vectors corresponding to units i = 1, 2, . . . ,m, Xi are ni × k matrices, β is a
k dimensional vector of “fixed” effects, Wi are ni×q matrices associated with random effects
(q typically less than k), bi is a q dimensional vector of unit-specific random effects such that
bi ∼ N (0,D), and µi ∼ N (0, σ2Ini) are stochastic errors.

We use standard conjugate prior distributions following Chib and Carlin (1999). In
particular, β ∼ N (β0,B0), σ2 ∼ IG(α0, 1/δ0) and D ∼ IW(d0, d0D0), and taking into
account that yi|β,D, σ2 ∼ N (Xiβ,Vi) where Vi = σ2I +WiDW

′
i , we have

β|σ2,D,y,X,W ∼ N (β∗,B),

bi|β, σ2,D,y,X,W ∼ N (b∗i ,Bi),

D|b ∼ IW(d∗,D∗),

σ2|β,D, b,y,X,W ∼ IG(α∗, δ∗),

where B = (B−1
0 + σ−2

∑n
i=1X

′
iV
−1
i Xi)

−1, β∗ = B(B−1
0 β0 + σ−2

∑n
i=1X

′
iV
−1
i yi), Bi =

(D−1 +σ−2W ′
iWi)

−1, b∗i = Bi(σ
−2W ′

i (yi−Xiβ)), d∗ = d0 +m and D∗ = d0D0 +
∑m

i=1 bib
′
i,

α∗ = α0 + 1
2

∑m
i=1 ni and δ∗ = 1/δ0 + 1

2

∑m
i=1(yi −Xiβ −Wibi)

′(yi −Xiβ −Wibi).

Logit: The hierarchical longitudinal logit model establishes yij ∼ B(πij) where logit(πij) =

log
(

πij
1−πij

)
≡ y∗ij = x′ijβ + w′ijbi + µij , i = 1, 2, . . . ,m and j = 1, 2, . . . , ni where xij are

k dimensional vectors of regressors, β is a k dimensional vector of “fixed” effects, wij are
q dimensional vectors of regressors associated with random effects (q typically less than k),
bi is a q dimensional vector of unit-specific random effects such that bi ∼ N (0,D), and
µij ∼ N (0, σ2) are stochastic errors.

We use standard conjugate prior distributions following Chib and Carlin (1999). In
particular, β ∼ N (β0,B0), σ2 ∼ IG(α0, 1/δ0) and D ∼ IW(d0, d0D0), and taking into
account that y∗i |β,D, σ2 ∼ N (Xiβ,Vi) where Vi = σ2I +WiDW

′
i , we have

y∗ij |β, σ2, b,y,X,W ∝ πyijij (1− πij)1−yij ×N (x′ijβ +w′ijbi, σ
2),

β|σ2,D,y∗,X,W ∼ N (β∗,B),

bi|β, σ2,D,y∗,X,W ∼ N (b∗i ,Bi),

D|b ∼ IW(d∗,D∗),

σ2|β,D, b,y∗,X,W ∼ IG(α∗, δ∗),

where B = (B−1
0 + σ−2

∑n
i=1X

′
iV
−1
i Xi)

−1, β∗ = B(B−1
0 β0 + σ−2

∑n
i=1X

′
iV
−1
i y∗i ), Bi =

(D−1 +σ−2W ′
iWi)

−1, b∗i = Bi(σ
−2W ′

i (y
∗
i −Xiβ)), d∗ = d0 +m and D∗ = d0D0 +

∑m
i=1 bib

′
i,
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α∗ = α0 + 1
2

∑m
i=1 ni and δ∗ = 1/δ0 + 1

2

∑m
i=1(y∗i −Xiβ −Wibi)

′(y∗i −Xiβ −Wibi).

We can implement a Gibbs sampling algorithm for the latter four standard conditional
posterior distributions. However, this model has been augmented with the latent variable

y∗ =
[
y∗ij

]
which should be drawn using a random-walk Metropolis–Hastings algorithm such

that the proposed distribution is Gaussian with mean y∗ij and variance equal to 1, that is,

y∗cij =y∗ij + εij where εij ∼ N (0, 1) which implies πij = 1

1+e
−y∗
ij

and πcij = 1

1+e
−y∗c
ij

.

Poisson: The hierarchical longitudinal Poisson model establishes yij ∼ P(λij),
32 where

log(λij) ≡ y∗ij = x′ijβ + w′ijbi + µij , i = 1, 2, . . . ,m and j = 1, 2, . . . , ni where xij are k
dimensional vectors of regressors, β is a k dimensional vector of “fixed” effects, wij are q
dimensional vectors of regressors associated with random effects (q typically less than k),
bi is a q dimensional vector of unit-specific random effects such that bi ∼ N (0,D), and
µij ∼ N (0, σ2) are stochastic errors.

We use standard conjugate prior distributions following Chib and Carlin (1999). In
particular, β ∼ N (β0,B0), σ2 ∼ IG(α0, 1/δ0) and D ∼ IW(d0, d0D0), and taking into
account that y∗i |β,D, σ2 ∼ N (Xiβ,Vi) where Vi = σ2I +WiDW

′
i , we have

y∗ij |β, σ2, b,y,X,W ∝ λyijij e
−λij ×N (x′ijβ +w′ijbi, σ

2),

β|σ2,D,y∗,X,W ∼ N (β∗,B),

bi|β, σ2,D,y∗,X,W ∼ N (b∗i ,Bi),

D|b ∼ IW(d∗,D∗),

σ2|β,D, b,y∗,X,W ∼ IG(α∗, δ∗),

where B = (B−1
0 + σ−2

∑n
i=1X

′
iV
−1
i Xi)

−1, β∗ = B(B−1
0 β0 + σ−2

∑n
i=1X

′
iV
−1
i y∗i ), Bi =

(D−1 +σ−2W ′
iWi)

−1, b∗i = Bi(σ
−2W ′

i (y
∗
i −Xiβ)), d∗ = d0 +m and D∗ = d0D0 +

∑m
i=1 bib

′
i,

α∗ = α0 + 1
2

∑m
i=1 ni and δ∗ = 1/δ0 + 1

2

∑m
i=1(y∗i −Xiβ −Wibi)

′(y∗i −Xiβ −Wibi).

We can implement a Gibbs sampling algorithm for the latter four standard conditional
posterior distributions. However, this model has been augmented with the latent variable

y∗ =
[
y∗ij

]
which should be drawn using a random-walk Metropolis–Hastings algorithm such

that the proposal distribution is Gaussian with mean y∗ij and variance equal to 1, that is,

y∗cij =y∗ij + εij where εij ∼ N (0, 1) which implies λij = ey
∗
ij and λcij = ey

∗c
ij .

5.4 Bayesian bootstrap

We implement the Bayesian bootstrap (Rubin, 1981) for linear regression models. In partic-
ular, the Bayesian bootstrap simulates the posterior distributions assuming that the sample
cumulative distribution function (cdf) is the population cdf (this assumption is also implicit

32P denotes a Poisson density.
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in the frequentist bootstrap (Efron, 1979)).

Given yi
i.n.d.∼ F where F does not define a particular parametric family of distributions,

i = 1, 2, . . . , n, but sets E(Yi|xi) = x′iβ, such that xi is a k dimensional vector of regressors
and β is a k dimensional vector of parameters, the Bayesian bootstrap generates posterior
probabilities for each yi where the values of Y that are not observed have zero posterior
probability.

The algorithm to implement the Bayesian bootstrap is the following:

Algorithm A3 Bayesian bootstrap in linear regression

1: Draw g ∼ Dir(α1, α2, . . . , αn) such that αi = 1 ∀i.
2: g = (g1, g2, . . . , gn) is the vector of probabilities to attach to (y1,x

′
1), (y2,x

′
2), . . . , (yn,x

′
n)

for each Bayesian bootstrap replication.
3: Sample (yi,x

′
i), i = 1, 2, . . . , n S1 times with replacement and probabilities gi.

4: Estimate β using ordinary least squares in the model E(Y |X) = Xβ, y being an S1

dimensional vector of realizations of Y , and X an S1×k matrix from the previous stage.∗

5: Repeat this process S2 times.
6: The distribution of β(s2) is the Bayesian distribution of β.
∗Ordinary least squares is the posterior mean of β using Jeffrey’s prior in a linear regression.

5.5 Bayesian model averaging

Bayesian model averaging (BMA) is an approach which takes into account model uncer-
tainty. In particular, we consider uncertainty in the regressors (variable selection) in a re-
gression framework where there are k possible explanatory variables. This implies M =
{M1,M2, . . . ,M2k} potential models indexed by parameters θm, m = 1, 2, . . . , 2k. Following
Simmons et al. (2010), the posterior model probability is

π(Mj |y) =
p(y|Mj)π(Mj)∑2k

m=1 p(y|Mm)π(Mm)
,

where π(Mj) is the prior model probability,33 p(y|Mj) =
∫
Θj
p(y|θj ,Mj)π(θj |Mj)dθj is the

marginal likelihood, and π(θj |Mj) is the prior distribution of θj .

Following Raftery (1993), the posterior distribution of θ is

π(θ|y) =

2k∑
m=1

π(θm|y,Mm)π(Mm|y)

where π(θm|y,Mm) is the posterior distribution of θ under modelm, E(θ|y) =
∑2k

m=1 θ̂mπ(Mm|y),

V ar(θ|y) =
∑2k

m=1 π(Mm|y)V̂ ar(θ|y,Mm)+
∑2k

m=1 π(Mm|y)(θ̂m−E(θ|y))2, θ̂m and V̂ ar(θ|y,Mm)

33We attach equal prior probabilities to each model. However, this choice gives more prior probability to
the set of models of medium size (think about the k-th row of Pascal’s triangle). An interesting alternative is
to use the Beta-Binomial prior proposed by Ley and Steel (2009).
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are the posterior mean and variance under model m, respectively.

The posterior variance highlights how the BMA method takes into account model un-
certainty. The first term is the weighted variance of each model, averaged over all potential
models, and the second term indicates how stable the estimates are across models. The more
the estimates differ between models, the greater is the posterior variance.

The posterior predictive distribution is

π(yNew|y) =
2k∑
m=1

pm(yNew|y,Mm)π(Mm|y)

where pm(yNew|y,Mm) =
∫
Θm

p(yNew|y,θm,Mm)π(θm|y,Mm)dθm is the posterior predic-
tive distribution under model m.

Another important statistic in BMA is the posterior inclusion probability associated with
variable xl, l = 1, 2, . . . , k, which is

PIP (xl) =

2k∑
m=1

π(Mm|y)× Il,m,

where Il,m =


1 if xl ∈Mm

0 if xl 6∈Mm

 .

Kass and Raftery (1995) suggest that posterior inclusion probabilities (PIP) less than 0.5
are evidence against the regressor, 0.5 ≤ PIP < 0.75 is weak evidence, 0.75 ≤ PIP < 0.95
is positive evidence, 0.95 ≤ PIP < 0.99 is strong evidence, and PIP ≥ 0.99 is very strong
evidence.

BMA allows incorporating model uncertainty in a regression framework, but sometimes
it is desirable to select just one model. Two compelling alternatives are the model with
the highest posterior model probability, and the median probability model. The latter is the
model which includes every predictor that has posterior inclusion probability higher than 0.5.
The first model is the best alternative for prediction in the case of a 0–1 loss function (Clyde
and George, 2004), whereas the second is the best alternative when there is a quadratic loss
function in prediction (Barbieri and Berger, 2004).

There are two main computational issues in implementing BMA. First, the marginal like-
lihood p(y|Mj) =

∫
Θj
p(y|θj ,Mj)π(θj |Mj)dθj most of the time does not have an analytic

solution, and second, the number of models in the model space is 2k, which sometimes can
be enormous.

The Bayesian information criterion is a possible solution for the first issue. Defining

h(θ|Mj) = − log(p(y|θj ,Mj)π(θj |Mj))
n , then p(y|Mj) =

∫
Θj
exp {−nh(θ|Mj)} dθj . If n is suffi-

ciently large (n→∞), we can make the following assumptions (Hoeting et al., 1999):
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• We can use the Laplace method for approximating integrals (Tierney and Kadane,
1986).

• The posterior mode is reached at the same point as the maximum likelihood estimator
(MLE), denoted by θ̂MLE .

We get the following results under these assumptions:

p(y|Mj) ≈
(

2π

n

)kj/2
|Σ|−1/2exp

{
−nh(θ̂MLE

j |Mj)
}
, n→∞,

where Σ is the Hessian matrix of h(θ̂MLE
j |Mj), and kj = dim {θj}.

This implies

log (p(y|Mj)) ≈
kj
2

log(2π)− kj
2

log(n)− 1

2
log(|Σ|) + log(p(y|θ̂MLE

j ,Mj)) + log(π(θ̂MLE
j |Mj)), n→∞.

Since
kj
2 log(2π) and log(π(θ̂MLE

j |Mj)) are constants as functions of y, and |Σ| is bounded
by a finite constant, we have

log (p(y|Mj)) ≈
kj
2

log(n) + log(p(y|θ̂MLE
j ,Mj)) = −BIC

2
, n→∞.

The second computational issue, which is related to the size of the model space (2k), is
basically a problem of ranking models. This can be tackled using different approaches, such as
Occam’s window criterion (Madigan and Raftery, 1994; Raftery et al., 1997), reversible jump
Markov chain Monte Carlo computation (Green, 1995), Markov chain Monte Carlo model
composition (Madigan et al., 1995b), and multiple testing using intrinsic priors (Casella and
Moreno, 2006) or nonlocal prior densities (Jhonson and Rossell, 2012). In this GUI we focus
on Occam’s window and Markov chain Monte Carlo model composition.34

In Occam’s window, a model is discarded if its predictive performance is much worse
than that of the best model (Madigan and Raftery, 1994; Raftery et al., 1997). Thus, mod-

els not belonging to M′ =
{
Mj : Maxrπ(Mr|y)

π(Mj |y) ≤ c
}

should be discarded, where c is chosen

by the user (Madigan and Raftery (1994) propose c = 20). In addition, complicated mod-
els than are less supported by the data than simpler models are also discarded, that is,

M′′ =
{
Mj : ∃Mm ∈M′,Mm ⊂Mj ,

π(Mm|y)
π(Mj |y) > 1

}
. Then, the set of models used in BMA

is M∗ = M′ ∩M′′c ∈ M. Raftery et al. (1997) find that the number of models in M∗ is
normally less than 25.

However, the previous theoretical framework requires calculating Maxrπ(Mr|y), which
implies calculating all possible models in M. This is computationally burdensome. Hence,

34Variable selection (model selection) is a topic related to model uncertainty. Approaches such as stochastic
search variable selection (spike and slab) (George and McCulloch, 1993, 1997; Ishwaran and Rao, 2005) and
Bayesian Lasso (Park and Casella, 2008) are good examples of how to tackle this issue. Future developments
will include these approaches.
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a heuristic approach is proposed by Raftery et al. (2012) based on ideas of Madigan and
Raftery (1994). The search strategy is based on a series of nested comparisons of ratios
of posterior model probabilities. Let M0 be a model with one regressor less than model
M1. If log(π(M0|y)/π(M1|y)) > log(OR), then M1 is rejected and M0 is considered; if
log(π(M0|y)/π(M1|y)) ≤ − log(OL), then M0 is rejected, and M1 is considered; and if
log(OL) < log(π(M0|y)/π(M1|y)) ≤ log(OR), M0 and M1 are considered. Here OR is a num-
ber specifying the maximum ratio for excluding models in Occam’s window, and OL = 1/O2

R

is defined by default in Raftery et al. (2012). The search strategy can be “up,” adding one
regressor, or “down,” dropping one regressor (see Madigan and Raftery (1994), down and
up algorithms for details). The leaps and bounds algorithm (Furnival and Wilson, 1974) is
implemented to improve the computational efficiency of this search strategy (Raftery et al.,
2012). Once the set of potentially acceptable models is defined, we discard all the models
that are not in M′, and the models that are in M′′ where 1 is replaced by exp {OR} due
to the leaps and bounds algorithm giving an approximation to BIC, so as to ensure that no
good models are discarded.

The second approach that we consider in this GUI to tackle the model space size issue is
Markov chain Monte Carlo model composition (Madigan et al., 1995a). In particular, given
the space of models M, we simulate a chain of Ms models, s = 1, 2, ..., S << 2k, where
the algorithm randomly extracts a candidate model Mc from a neighborhood of models
(nbd(M)) that consists of the actual model itself and the set of models with either one
variable more or one variable less (Raftery et al., 1997). Therefore, there is a transition
kernel in the space of models q(M → Mc), such that q(M → Mc) = 0 ∀Mc /∈ nbd(M) and
q(M → Mc) = 1

|nbd(M)| ∀M ∈ nbd(M), |nbd(M)| being the number of neighbors of M . This
candidate model is accepted with probability

α(Ms−1,Mc) = Min

{
|nbd(M)|p(y|Mc)π(Mc)

|nbd(M c)|p(y|M(s−1))π(M(s−1))
, 1

}
.

Observe that by construction |nbd(M)| = |nbd(Mc)| = k, except in extreme cases where
a model has only one regressor or has all regressors.

Normal: The Gaussian linear model specifies y = Xβ+µ such that µ ∼ N (0, σ2In), and
the conjugate priors for the parameters are β|σ2 ∼ N (β0, σ

2B0) and σ2 ∼ IG(α0/2, δ0/2).
Given the likelihood function, p(β, σ2|y,X) = (2πσ2)−

n
2 exp

{
− 1

2σ2 (y −Xβ)′(y −Xβ)
}

,

the marginal distribution p(y) is T
(
Xβ0,

α0(I+XB0X′)
δ0

, δ0

)
.

• Bayesian information criterion: We implement the BIC approximation in the Gaussian
linear model using the Occam’s window approach.

• Markov chain Monte Carlo model composition (MC3): We implement the Gaussian
linear model using MC3 using the marginal multivariate Student’s t distribution.

• Instrumental variables: Consider the previous instrumental variable framework (see
subsection 5.2) assuming γ ∼ N (0, I), β ∼ N (0, I), and Σ−1 ∼ W(3, I) (Karl and
Lenkoski, 2012). Then, the posterior distributions are
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β|γ,Σ,y,X,Z ∼ N (β∗,B∗)

γ|β,Σ,y,X,Z ∼ N (γ∗,G∗)

Σ−1|β,γ,y,X,Z ∼ W(α∗,Σ∗)

where B∗ = (ω−1
1

∑n
i=1 xix

′
i + I)−1, β∗ = B∗

(
ω−1

1

∑n
i=1

[
xi

(
yi −

σ12(xsi−w′iγ)
σ22

)])
,

ω1 = σ11−σ2
12/σ22,G∗ = (ω−1

2

∑n
i=1wiw

′
i+I)−1, γ∗ = G∗

(
ω−1

2

∑n
i=1

[
wi

(
xsi −

σ12(yi−x′iβ)
σ11

)])
,

ω2 = σ22−σ2
12/σ11, α∗ = 3+n and Σ∗ =

[
I +

∑n
i=1

(
yi − x′iβ
xsi −w′iγ

)
(yi − x′iβ, xsi −w′iγ)

]−1

.

Lenkoski et al. (2013) propose an algorithm based on conditional Bayes factors (Dickey
and Gunel, 1978) that allows embedding MC3 within a Gibbs sampling algorithm.
Given the candidate (M2nd

c ) and actual (M2nd
s−1) models for the iteration s in the second

stage, the conditional Bayes factor is CBF 2nd = p(y|M2nd
c ,γ,Σ)

p(y|M2nd
s−1,γ,Σ)

, where p(y|M2nd
c ,γ,Σ) =∫

M2nd p(y|β,γ,Σ)π(β|M2nd
c )dβ ∝ |B∗|1/2Exp

{
1
2β
∗′B∗−1β∗

}
. For the first stage,

CBF 1st = p(y|M1st
c ,β,Σ)

p(y|M1st
s−1,β,Σ)

, where p(y|M1st
c ,β,Σ) =

∫
M1st p(y|γ,β,Σ)π(γ|M1st

c )dγ ∝

|G∗|1/2Exp
{

1
2γ
∗′G∗−1γ∗

}
.35 These conditional Bayes factors assume π(M1st,M2sd) ∝

1. See Lenkoski et al. (2013) for more details of the instrumental variable BMA algo-
rithm.36

The Gaussian linear model is an example of a generalized linear model. A GLM is
characterized by a distribution function that is in the exponential family, that is, pi(yi|θi, φ) =

h(yi, φ)Exp {(θiyi − b(θi))/a(φ)} (canonical representation), yi
i.n.d.∼ pi, i = 1, 2, . . . , n. It also

has a linear predictor θi = x′iβ, and a link function g such that E(Yi|xi) ≡ µi = b′(θi) =
g−1(x′iβ) (g is monotonic and differentiable), and V (Yi) = b′′(θi)a(φ) (McCullagh and Nelder,
1989). The identity function µi = x′iβ is the canonical link function in the case of the
Gaussian model.37 This statistical framework can help us to characterize:

Logit: The logit model is also a GLM, where the link function is x′iβ = log
(

µi
1−µi

)
. We

carry out BMA using the BIC approximation and the Occam’s window approach in the logit
model.

Gamma: The gamma model is also a GLM, where the link function is x′iβ = µ−1
i .

We carry out BMA using the BIC approximation and the Occam’s window approach in the
gamma model.

Poisson: The logit model is also a GLM, where the link function is x′iβ = log(µi).
We carry out BMA using the BIC approximation and the Occam’s window approach in the
Poisson model.

35In the case that βs = 0, the update is based on the seemingly unrelated regressions framework.
36Koop et al. (2012) and Lenkoski et al. (2014) propose other frameworks for BMA taking into account

endogeneity.
37A canonical link functions is characterized by the existence of a sufficient statistic (X ′y) equal in dimension

to β.
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6 Concluding remarks

The Bayesian statistical framework has become very popular among scientists since the com-
putational revolution in the 1990’s. In particular, computationally burdensome procedures
such as Markov chain Monte Carlo algorithms can be easily implemented nowadays. How-
ever, most of the open source software to apply these procedures requires programming
skills. This may be one reason why the Bayesian framework is not very popular among ap-
plied researchers and practitioners. In this paper, we introduced a graphical user interface
to implement Bayesian regression analysis under different frameworks, explaining the basic
theory, so that users can understand the basic principles of Bayesian statistics and apply
them easily. Our objective has been to increase the popularity of the Bayesian statistical
framework among applied researchers and practitioners.
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Table 1: Graphical user interfaces to carry out Bayesian regression analysis.

Name Language Models Open source
ShinyStan R+Stan MCMC Implementation∗ Yes

Bayesian regression: NP&P MATLAB Compiler

Bayesian infinite-mixture regression

Yes

Bayesian normal regression
Hierarchical linear regression
Binary regression
Ordered regression
Censoring regression
Quantile regression
Survival regression
Density estimation
Variable selection (spike-and-slab)

BugsXLA OpenBUGS + Excel

Normal linear models

Yes

GLM: Binomial
GLM: Poisson
GLM: Survival
GLM: Multivariate categorical data
Normal linear mixed
Generalized linear mixed
Bayesian variable selection
Robust models

MATLAB toolkit: E&E+ MATLAB

Linear Regression

No

Regression with non-spherical errors
Regime switch regression
Regression with restricted parameters
Seemingly unrelated regression (SUR)
Vector AutoRegression (VAR)
Instrumental variable
Probit and logit
Tobit Model
Panel Data Analysis
Stochastic search variable selection
Highest posterior density (HPD) region
Marginal likelihood of linear regression

Stata Stata MCMC implementation∗ No

BayES C++

Simple linear model

No

Random-effects
Random-coefficients
Stochastic frontiers
Inefficiency-effects
Random-effects stochastic frontiers
Dynamic stochastic frontier
Probit and logit
Random-effects probit and logit
Multinomial probit and logit
Ordered probit and logit
Poisson and negative-binomial
Type I Tobit
Type II Tobit
Seemingly unrelated regressions (SUR)
Vector Autoregressive (VAR)

∗User should define prior and likelihood.
+Toolkit on econometrics and economics teaching.
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Table 2: Libraries and commands in BEsmarter GUI.

Univariate models

Model Library Command Reference

Normal MCMCpack MCMCregress Martin et al. (2018)
Logit MCMCpack MCMClogit Martin et al. (2018)
Probit bayesm rbprobitGibbs Rossi (2017)
Multinomial(Mixed) Probit bayesm rmnpGibbs Rossi (2017)
Multinomial(Mixed) Logit bayesm rmnlIndepMetrop Rossi (2017)
Ordered Probit bayesm rordprobitGibbs Rossi (2017)
Negative Binomial(Poisson) bayesm rnegbinRw Rossi (2017)
Tobit MCMCpack MCMCtobit Martin et al. (2018)
Quantile MCMCpack MCMCquantreg Martin et al. (2018)

Multivariate models

Model Library Command Reference

Multivariate bayesm rmultireg Rossi (2017)
Seemingly Unrelated Regression bayesm rsurGibbs Rossi (2017)
Instrumental Variable bayesm rivGibbs Rossi (2017)
Bivariate Probit bayesm rmvpGibbs Rossi (2017)

Hierarchical longitudinal models

Model Library Command Reference

Normal MCMCpack MCMChregress Martin et al. (2018)

Logit MCMCpack MCMChlogit Martin et al. (2018)

Poisson MCMCpack MCMChpoisson Martin et al. (2018)

Bayesian Bootstrap

Model Library Command Reference

Bayesian bootstrap bayesboot bayesboot Baath (2018)

Bayesian model averaging

Model Library Command Reference

Normal (BIC) BMA bic.glm Raftery et al. (2012)
Normal (MC3) BMA MC3.REG Raftery et al. (2012)
Normal (instrumental variables) ivbma ivbma Lenkoski et al. (2013)
Logit (BIC) BMA bic.glm Raftery et al. (2012)
Gamma (BIC) BMA bic.glm Raftery et al. (2012)
Poisson (BIC) BMA bic.glm Raftery et al. (2012)

Diagnostics

Diagnostic Library Command Reference

Trace plot coda traceplot Plummer et al. (2016)
Autocorrelation plot coda autocorr.plot Plummer et al. (2016)
Geweke test coda geweke.diag Plummer et al. (2016)
Raftery & Lewis test coda raftery.diag Plummer et al. (2016)
Heidelberger & Welch test coda heidel.diag Plummer et al. (2016)
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Table 3: Datasets templates in folder DataSim.

Univariate models

Model Data set file Data set simulation

Normal 11SimNormalmodel.csv 11SimNormal.R
Logit 12SimLogitmodel.csv 12SimLogit
Probit 13SimProbitmodel.csv 13SimProbit.R
Multinomial(Mixed) Probit 14SimMultProbmodel.csv 14SimMultinomialProbit.R
Multinomial(Mixed) Logit 15SimMultLogitmodel.csv 15SimMultinomialLogit.R
Ordered Probit 16SimOrderedProbitmodel.csv 16SimOrderedProbit.R
Negative Binomial(Poisson) 17SimNegBinmodel.csv 17SimNegBin.R
Tobit 18SimTobitmodel.csv 18SimTobit.R
Quantile 19SimQuantilemodel.csv 19SimQuantile.R

Multivariate models

Model Data set file Data set simulation

Multivariate 21SimMultivariate.csv 21SimMultReg.R
Seemingly Unrelated Regression 22SimSUR.csv 22SimSUR.R
Instrumental Variable 23SimIV.csv 23SimIV.R
Bivariate Probit 24SimMultProbit.csv 24SimMultProbit.R

Hierarchical longitudinal models

Model Data set file Data set simulation

Normal 31SimLogitudinalNormal.csv 31SimLogitudinalNormal.R

Logit 32SimLogitudinalLogit.csv 32SimLogitudinalLogit.R

Poisson 33SimLogitudinalPoisson.csv 33SimLogitudinalPoisson.R

Bayesian Bootstrap

Model Data set file Data set simulation

Bayesian bootstrap 41SimBootstrapmodel.csv 41SimBootstrapmodel.R

Bayesian model averaging

Model Data set file Data set simulation

Normal (BIC) 511SimNormalBMA.csv 511SimNormalBMA.R
Normal (MC3) 512SimNormalBMA.csv 512SimNormalBMA.R

Normal (instrumental variables)
513SimNormalBMAivYXW.csv

513SimNormalBMAiv.R
513SimNormalBMAivZ.csv

Logit (BIC) 52SimLogitBMA.csv 52SimLogitBMA.R
Gamma (BIC) 53SimGammaBMA.csv 53SimGammaBMA.R
Poisson (BIC) 53SimPoissonBMA.csv 53SimPoissonBMA.R
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Table 4: Real datasets in folder DataApp.

Univariate models

Model Data set file Dependent variable

Normal 1ValueFootballPlayers.csv log(Value)
Logit 2HealthMed.csv Hosp
Probit 2HealthMed.csv Hosp
Multinomial(Mixed) Probit Fishing.csv mode
Multinomial(Mixed) Logit Fishing.csv mode
Ordered Probit 2HealthMed.csv MedVisPrevOr
Negative Binomial(Poisson) 2HealthMed.csv MedVisPrev
Tobit 1ValueFootballPlayers.csv log(ValueCens)
Quantile 1ValueFootballPlayers.csv log(Value)

Multivariate models

Model Data set file Dependent variable

Multivariate 4Institutions.csv logpcGDP95 and PAER
Seemingly Unrelated Regression 5Institutions.csv logpcGDP95 and PAER
Instrumental Variable 6Institutions.csv logpcGDP95 and PAER
Bivariate Probit 7HealthMed.csv y = [Hosp SHI]′

Hierarchical longitudinal models

Model Data set file Dependent variable

Normal 8PublicCap.csv log(gsp)

Logit 9VisitDoc.csv DocVis

Poisson 9VisitDoc.csv DocNum

Bayesian Bootstrap

Model Data set file Dependent variable

Bayesian bootstrap 1ValueFootballPlayers.csv log(Value)

Bayesian model averaging

Model Data set file Dependent variable

Normal (BIC) 10ExportDiversificationHHI.csv avghhi
Normal (MC3) 10ExportDiversificationHHI.csv avghhi

Normal (instrumental variables)
11ExportDiversificationHHI.csv

avghhi and avglgdpcap
12ExportDiversificationHHIInstr.csv

Logit (BIC) 13InternetMed.csv internet
Gamma (BIC) 14ValueFootballPlayers.csv log market value
Poisson (BIC) 15Fertile2.csv ceb
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